Великий квест. Гении и безумцы в поиске истоков жизни на Земле - Маршалл Майкл - Страница 79
- Предыдущая
- 79/95
- Следующая
280
Ferris J. P. et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature, vol. 381, pp. 59–61. 1996.
281
Лишенный остатка фосфорной кислоты нуклеотид носит название нуклеозид. По-видимому, это сходство названий призвано запутать и без того перегруженных терминологией научных журналистов.
282
Schwartz A. W., Orgel L. E. Template-directed synthesis of novel, nucleic acid-like structures. Science, vol. 228, iss. 4699, pp. 585–587. 1985.
283
Joyce G. F. et al. The case for an ancestral genetic system involving simple analogues of the nucleotides. PNAS, vol. 84, iss. 13, pp. 4398–4402. 1987.
284
Achilles T., von Kiedrowski G. A self-replicating system from three starting materials. Angewandte Chemie International Edition, vol. 32, iss. 8, pp. 1198–1201. 1993.
285
Sievers D., von Kiedrowski G. Self-replication of complementary nucleotide-based oligomers. Nature, vol. 369, pp. 221–224. 1994.
286
Nielsen P. E. et al. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, vol. 254, iss. 5037, pp. 1497–1500. 1991.
287
Wittung P. et al. DNA-like Double Helix formed by Peptide Nucleic Acid. Nature, vol. 368, iss. 6471, pp. 561–563. 1994.
288
Miller S. L. Peptide nucleic acids and prebiotic chemistry. Nature Structural Biology, vol. 4, iss. 3, pp. 167–169. 1997.
289
Nelson K. E. et al. Peptide nucleic acids rather than RNA may have been the first genetic molecule. PNAS, vol. 97, iss. 8, pp. 3868–3871. 2000.
290
Schöning K.-U. et al. Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl- (3’→2’) Oligonucleotide System. Science, vol. 290, iss. 5495, pp. 1347–1351. 2000.
291
Yu H. et al. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nature Chemistry, vol. 4, pp. 183–187. 2012.
292
Видимо, в этом случае их следует назвать “треозимами”.
293
Yonath A. et al. Crystallization of the large ribosomal subunit from B. stearothermophilus. Biochemistry International, vol. 1, pp. 428–35. 1980.
294
Yonath A. et al. Some X-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. Journal of Molecular Biology, vol. 177, iss. 1, pp. 201–206. 1984.
295
Ban N. et al. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution. Science, vol. 289, iss. 5481, pp. 905–920. 2000.
Nissen P. et al. The Structural Basis of Ribosome Activity in Peptide Bond Synthesis. Science, vol. 289, iss. 5481, pp. 920–930. 2000.
296
Cech T. R. The ribosome is a ribozyme. Science, vol. 289, iss. 5481, pp. 878–879. 2000.
297
Schluenzen F. et al. Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution. Cell, vol. 102, iss. 5, pp. 615–623. 2000.
Wimberly B. T. et al. Structure of the 30S ribosomal subunit. Nature, vol. 407, pp. 327–339. 2000.
298
www.nobelprize.org/prizes/chemistry/2009/summary/
299
Kim D. E., Joyce G. F. Cross-catalytic replication of an RNA ligase ribozyme. Chemistry & Biology, vol. 11, iss. 11, pp. 1505–1512. 2004.
Lincoln T. A., Joyce G. F. Self-sustained replication of an RNA enzyme. Science, vol. 323, iss. 5918, pp. 1229–1232. 2009.
300
Bernhardt H. S. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biology Direct, vol. 7, pp. 23–37. 2012.
- Предыдущая
- 79/95
- Следующая