The World is Flat - Friedman Thomas - Страница 65
- Предыдущая
- 65/120
- Следующая
This chapter is about how we Americans, individually and collectively, have not been doing all these things that we should be doing and what will happen down the road if we don't change course.
The truth is, we are in a crisis now, but it is a crisis that is unfolding very slowly and very quietly. It is “a quiet crisis,” explained Shirley Ann Jackson, the 2004 president of the American Association for the Advancement of Science and president of Rensselaer Polytechnic Institute since 1999. (Rensselaer is America's oldest technological college, founded in 1824.) And this quiet crisis involves the steady erosion of America's scientific and engineering base, which has always been the source of American innovation and our rising standard of living.
“The sky is not falling, nothing horrible is going to happen today,” said Jackson, a physicist by training who chooses her words carefully. “The U.S. is still the leading engine for innovation in the world. It has the best graduate programs, the best scientific infrastructure, and the capital markets to exploit it. But there is a quiet crisis in U.S. science and technology that we have to wake up to. The U.S. today is in a truly global environment, and those competitor countries are not only wide awake, they are running a marathon while we are running sprints. If left unchecked, this could challenge our preeminence and capacity to innovate.”
And it is our ability to constantly innovate new products, services, and companies that has been the source of America's horn of plenty and steadily widening middle class for the last two centuries. It was American innovators who started Google, Intel, HP, Dell, Microsoft, and Cisco, and it matters where innovation happens. The fact that all these companies are headquartered in America means that most of the high-paying jobs are here, even if these companies outsource or offshore some functions. The executives, the department heads, the sales force, and the senior researchers are all located in the cities where the innovation happened. And their jobs create more jobs. The shrinking of the pool of young people with the knowledge skills to innovate won't shrink our standard of living overnight. It will be felt only in fifteen or twenty years, when we discover we have a critical shortage of scientists and engineers capable of doing innovation or even just high-value-added technology work. Then this won't be a quiet crisis anymore, said Jackson, “it will be the real McCoy.”
Shirley Ann Jackson knows of what she speaks, because her career exemplifies as well as anyone's both why America thrived so much in the past fifty years and why it won't automatically do the same in the next fifty. An African-American woman, Jackson was born in Washington, D.C., in 1946. She started kindergarten in a segregated public school but was one of the first public school students to benefit from desegregation, as a result of the Supreme Court ruling in Brown v. Board of Education. Just when she was getting a chance to go to a better school, the Russians launched Sputnik in 1957, and the U.S. government became obsessed with educating young people to become scientists and engineers, a trend that was intensified by John F. Kennedy's commitment to a manned space program. When Kennedy spoke about putting a man on the moon, Shirley Ann Jackson was one of the millions of American young people who were listening. His words, she recalled, “inspired, assisted, and launched many of my generation into science, engineering and mathematics,” and the breakthroughs and inventions they spawned went well beyond the space program. “The space race was really a science race,” she said.
Thanks in part to desegregation, both Jackson's inspiration and intellect were recognized early, and she ultimately became the first African-American woman to earn a Ph.D. in physics from MIT (her degree was in theoretical elementary particle physics). From there, she spent many years working for AT&T Bell Laboratories, and in 1995 was appointed by President Clinton to chair the U.S. Nuclear Regulatory Commission.
As the years went by, though, Jackson began to notice that fewer and fewer young Americans were captivated by national challenges like the race to the moon, or felt the allure of math, science, and engineering. In universities, she noted, graduate enrollment in science and engineering programs, having grown for decades, peaked in 1993, and despite some recent progress, it remains today below the level of a decade ago. So the science and engineering generations that followed Jackson's got smaller and smaller relative to our needs. By the time Jackson took the job as Rensselaer Polytechnic's president to put her heart and soul into reinvig-orating American science and engineering, she realized, she said, that a “perfect storm” was brewing-one that posed a real long-term danger to America's economic health-and she started speaking out about it whenever she could.
“The phrase 'the perfect storm' is associated with meteorological events in October 1991,” said Jackson in a speech in May 2004, when “a powerful weather system gathered force, ravaging the Atlantic Ocean over the course of several days, [and] caused the deaths of several Massachusetts-based fishermen and billions of dollars of damage. The event became a book, and, later, a movie. Meteorologists observing the event emphasized... the unlikely confluence of conditions... in which multiple factors converged to bring about an event of devastating magnitude. [A] similar worst-case scenario could arrest the progress of our national scientific and technological capacity. The forces at work are multiple and complex. They are demographic, political, economic, cultural, even social.” Individually, each of these forces would be problematic, added Jackson. In combination, they could be devastating. “For the first time in more than a century, the United States could well find itself falling behind other countries in the capacity for scientific discovery, innovation and economic development.”
The way to avoid being caught in such a storm is to identify the confluence of factors and to change course-even though right now the sky is blue, the winds are gentle, and the water seems calm. But that is not what has been going on in America in recent years. We are blithely sailing along, heading straight for the storm, with both politicians and parents insisting that no dramatic changes or sacrifices are required now. After all, look how calm and sunny it is outside, they tell us. In the fiscal year 2005 budget passed by the Republican-led Congress in November 2004, the budget for the National Science Foundation, which is the federal body most responsible for promoting research and funding more and better science education, was actually cut by 1.9 percent, or $105 million. History will show that when America should have been doubling the NSF funding, its Congress passed a pork-laden budget that actually cut assistance for science and engineering.
Don't be fooled by the calm. That's always the time to change course-not when you're just about to get hit by the typhoon. We don't have any time to waste in addressing the “dirty little secrets” of our education system.
Dirty Little Secret #1: The Numbers Gap
In the Cold War, one of the deepest causes of American worries was the so-called missile gap between us and the Soviet Union. The perfect storm Shirley Ann Jackson is warning about could best be described as the confluence of three new gaps that have been slowly emerging to sap America's prowess in science, math, and engineering. They are the numbers gap, the ambition gap, and the education gap. In the Age of Flatism, these gaps are what most threaten our standard of living.
Dirty little secret number one is that the generation of scientists and engineers who were motivated to go into science by the threat of Sputnik in 1957 and the inspiration of JFK are reaching their retirement years and are not being replaced in the numbers that they must be if an advanced economy like that of the United States is to remain at the head of the pack. According to the National Science Foundation, half of America's scientists and engineers are forty years or older, and the average age is steadily rising.
- Предыдущая
- 65/120
- Следующая