Первоначала вещей
(Очерк о строении вещества) - Кудрявцев Борис Сергеевич - Страница 9
- Предыдущая
- 9/23
- Следующая
А что же происходит при сжатии газа?
Уменьшив объем, занимаемый тазом, в два раза, мы тем самым в два раза увеличим число молекул в каждом кубическом сантиметре, а значит, в два раза увеличим и число ударов о стенки сосуда в каждую секунду.
Если сжимать газ при постоянной температуре, то скорость молекул не изменяется: они ударяют о стенки с прежней силой, только чаще. Так, в нашем примере после уменьшения объема газа молекулы будут ударять о стенки в два раза чаще, и, значит, в два раза возрастет давление газа.
При очень сильном сжатии газ может сильно нагреваться. Кто знаком с работой дизельного мотора, тот знает, что в цилиндрах этой машины нет никаких «свечей» или каких-либо других средств зажигания. Поршень, сжимая газ в цилиндре, заполненном горючей смесью, сообщает ее молекулам такую скорость, что смесь разогревается до температуры вспышки. Воспламенившись, смесь быстро сгорает. Температура продуктов горения поднимается при этом еще выше, давление в цилиндре увеличивается, и поршень отбрасывается назад.
Вспомните, что, накачивая велосипедную шину, вы ощущаете, как нагревается насос. Многие скажут, что он нагревается благодаря трению поршня о стенки насоса. Это не совсем верно. Качайте этим же насосом воздух не в шину, а просто в атмосферу. Если насос при этом и нагреется, то слабее, чем в первый раз. Главная причина нагревания насоса заключается опять-таки в том, что, быстро сжимая газ, вы увеличиваете среднюю скорость его молекул, или, другими словами, повышаете его температуру.
При расширении сжатых газов наблюдается обратная картина — они охлаждаются.
Давление быстро растет при нагревании газов. Как это объяснить?
Вы уже знаете, что при нагревании газа скорости молекул увеличиваются. Быстрее двигаясь, молекулы чаще ударяются о стенки, и каждый удар их сильнее, чем при низкой температуре. Понятно, что возникающее от сложения ударов отдельных молекул давление газа в этом случае будет значительно больше.
Такова причина упругости газов. Впервые указал на нее М. В. Ломоносов.
«… Мы считаем излишним, — писал Ломоносов, — призывать на помощь для отыскания причины упругости воздуха ту своеобразную блуждающую жидкость, которую очень многие — по обычаю века, изобилующего тонкими материями, — применяют обыкновенно для объяснения природных явлений. Мы довольствуемся тонкостью и подвижностью самого воздуха и ищем причину упругости в самой материи его».
Жидкие газы
Сжимая какой-либо газ, мы уменьшаем расстояние между его молекулами. Увеличивая давление, можно очень сильно сблизить молекулы газа.
Известно, что вещество в жидком состоянии занимает меньший объем, чем в парообразном. Объем одного стакана воды, например, — 0,2 литра. То же количество воды в виде водяного пара займет объем приблизительно в полторы тысячи раз больший.
Невольно возникает вопрос: что же будет, если мы, увеличивая давление, сблизим молекулы газа до тех расстояний, на которых находятся друг от друга молекулы жидкостей? Не превратится ли газ в жидкость?
Этот вопрос давно привлекал внимание ученых. Более ста лет тому назад, в 1823 году, им занялся молодой английский физик М. Фарадей. Он производил много опытов, настойчиво добиваясь ответа на интересующий его вопрос.
Однажды, когда Фарадей ставил очередной опыт, пытаясь превратить в жидкость удушающий газ хлор, в лабораторию вошел его руководитель вместе с одним из своих приятелей. Последний, заметив на стенках прибора маслянистую жидкость и думая, что прибор загрязнен каким-то маслом по небрежности Фарадея, сделал ученому замечание. На следующее утро почтальон принес ему письмо молодого физика. Письмо было кратким: «Масло, замеченное вами вчера, было не чем иным, как жидким хлором».
Что же происходит при сжатии газа? Почему газ превращается в жидкость?
До сих пор при рассмотрении свойств мельчайших частиц вещества — атомов и молекул — мы умалчивали об одном важном их свойстве. Атомы и молекулы любого вещества притягиваются друг к другу особыми силами — силами молекулярного сцепления, подобно тому, как все тела притягиваются к земле силой тяготения. Пока расстояния между молекулами велики, силы молекулярного сцепления малы. Однако они быстро растут по мере того, как это расстояние уменьшается. Таким образом, при сжатии газа силы сцепления молекул друг с другом возрастают. Этих сил и оказывается достаточно для того, чтобы при комнатной температуре, когда молекулы газа еще быстро движутся, превратить в жидкость многие газы.
Так были получены жидкие газы: хлор, аммиак, углекислота и другие.
Рис. 17. Если литр воды обратить в пар, то пар при температуре кипения воды и атмосферном давлении займет цистерну объемом в 1 500 литров.
Однако не все газы удается превратить в жидкость при комнатной температуре. Имеется много газов, которые при обычной температуре не сжижаются, какое бы высокое давление вы ни применили. К таким газам относятся кислород, азот, водород и т. д. Для них было придумано даже специальное название — «постоянные» газы. Так называли эти газы, желая подчеркнуть невозможность превращения их в жидкость.
В чем же причина загадочного «постоянства» кислорода, азота и других несжижающихся газов?
Правильный ответ на этот вопрос дал великий русский ученый Дмитрий Иванович Менделеев. Он рассуждал так: когда сжимается какой-нибудь газ, силы молекулярного сцепления помогают сжатию, стараются еще сильнее сблизить молекулы друг с другом. Этому сближению, однако, противится тепловое движение молекул, которое заставляет молекулы рассеиваться во все стороны, вызывает в газе стремление расшириться и занять возможно больший объем.
Если силы сцепления велики, они могут преодолеть стремление газа к расширению, удержать молекулы друг около друга и таким образом создать некоторый порядок в их расположении, характерный для жидкости.
Но когда силы сцепления невелики, тепловое движение молекул не позволит газу превратиться в жидкость, силы сцепления не смогут преодолеть стремления молекул улететь друг от друга возможно дальше. В этом и заключается причина «постоянства» таких газов, как кислород, азот или водород. Встречаем ли мы здесь непреодолимое препятствие, поставленное природой на пути человека? Отнюдь нет!
Для того чтобы превратить в жидкость «постоянные» газы, необходимо лишь сильно охладить их. При понижении температуры скорость движения молекул уменьшается, делается меньше стремление их рассеяться в разные стороны, и сил сцепления оказывается достаточно для сжижения газа.
Д. И. Менделеев указал, что для каждого газа существует определенная температура, выше которой его никаким давлением нельзя превратить в жидкость. При более высокой температуре жидкость существовать не может. Менделеев назвал эту температуру «температурой абсолютного кипения».
В наше время ее называют «критической температурой» вещества.
Критические температуры различных веществ сильно отличаются друг от друга. Так, водяной пар нельзя превратить в воду, если он нагрет выше 374 градусов, кислород же нельзя превратить в жидкость, если он не охлажден до 119 градусов ниже нуля.
Теперь понятно, почему так долго не могли превратить «постоянные» газы в жидкости. Температуры этих газов были выше их критических температур. Когда одновременно со сжатием начали сильно охлаждать газы до температур ниже критической, то все известные газы были превращены в жидкость и само название «постоянные» газы потеряло смысл.
В наше время в школах можно часто видеть голубую подвижную жидкость, налитую в небольшой сосуд с двойными стенками, посеребренными изнутри. Это жидкий воздух. Самый обыкновенный воздух, который окружает нас и которым мы дышим, превращенный в жидкость.
- Предыдущая
- 9/23
- Следующая