Проблемы эволюции и теоретические вопросы систематики - Скворцов Алексей - Страница 2
- Предыдущая
- 2/20
- Следующая
Мне кажется, можно значительно улучшить положение, решить ряд старых проблем и быстрее справляться с вновь возникающими проблемами, если шире использовать логику и аналогии, т. е. наиболее универсальные мыслительные инструменты. Конечно, все согласятся, что логика в науке важна и необходима, в общей форме это банальная истина, которую незачем обсуждать. На деле же часто (и в истории эволюционной теории немало тому примеров!) очевидные и логически необходимые заключения получают признание с великим трудом, а явные алогизмы держатся долго и цепко. Таким образом, использование логики и аналогий в биологической теории, в частности в теории эволюции, – совсем не такое простое дело.
Вполне понятно, что обнаружение и критика логических прорех в рассуждениях других авторов не страхует самого критикующего от таких прорех. Поэтому я с благодарностью приму от читателя, и специалиста и неспециалиста, указания на недочеты или логические провалы в моих рассуждениях.
Особенности биологической теории
Часто приходится слышать: вот, существует теоретическая физика, но нельзя сказать, что существует и теоретическая биология. Отдельные теории в биологии есть, однако теоретической биологии как особой дисциплины нет; не сформулированы основные биологические закономерности и в виде точных количественных отношений.
И это, говорят, нужно расценивать как свидетельство незрелости биологии как науки. Вот если бы удалось предложить несколько фундаментальных уравнений, из которых можно было бы вывести всю биологию… Но почему, собственно, непременно должна существовать теоретическая биология как отдельная дисциплина и почему ее идеалом надо считать теоретическую физику, а идеалом всех биологических объяснений – математически формулируемые зависимости? К тому ли мы стремимся, там ли, где следует, ищем?
Живая материя построена из тех же элементов, что и неживая; но пока мы изучаем то общее, что присуще живой и неживой материи, мы остаемся в рамках физики и химии. Биологию же интересует то, что отличает живое от неживого. Не должна ли поэтому теоретическая биология как раз отличаться от теоретической физики, и не будет ли биологическая теория тем более биологичной, чем меньше она похожа на теорию физическую?
В самом деле, для физических теорий идеалом является неограниченная возможность точных количественно выраженных предсказаний; в этих теориях время (если не отсутствует вовсе) рассматривается как координата, равноценная пространственным. В биологии же ситуация иная. Биология имеет дело с процессами самоорганизации, саморегуляции и самовоспроизведения открытых систем, с взаимодействием этих систем как «по горизонтали» (т. е. с системами того же или близкого уровня организации), так и «по вертикали» (с учетом соподчинения этих уровней). Системы эти преемственны, они получают от своих предшественников и передают потомкам не только вещество, но и – что еще важнее – информацию. При этом жизнедеятельность каждой системы отнюдь не единообразна на протяжении ее существования и не предопределена целиком изначально: ей постоянно приходится выбирать тот или иной вид дальнейшей деятельности (поведения). Выбор определяется в основном внутренним состоянием системы в данный момент и поступающими извне сигналами, но вместе с тем почти всегда какую-то роль играет и случайность; диапазон такого выбора, естественно, ограничен возможностями системы. В свою очередь, всякий однажды сделанный выбор оставляет тот или иной след в системе, тем самым влияя на последующие выборы. Значит, требования полного детерминизма и полной точности предсказаний к биологии совершенно неприложимы[1]. Время в биологических процессах однонаправленно, необратимо и неповторимо, т. е. для биологии координата времени не только абсолютно необходима, но и принципиально неравнозначна координатам пространства.
Таким образом, историзм – фундаментальная особенность живых систем. Отсюда существенная необходимость не только синхронической (сиюминутной), но и диахронической (исторической) их характеристики[2].
Поэтому, вероятно, не только «пока еще», айв принципе наиболее общие и фундаментальные биологические теории могут быть сформулированы не в абстрактной математической форме, а только в форме дискурсивной, в виде содержательных логически непротиворечивых высказываний. Это, конечно, не исключает возможности придания некоторым теоретическим положениям биологии характера аксиом, из которых как следствия могут быть выведены другие положения[3]. Не исключает это и целесообразности использования математических методов в биологических исследованиях, а также широкого сотрудничества биологии с физикой; напротив, надлежащее понимание специфики каждой науки только содействует прочности и продуктивности такого сотрудничества.
Биологические объекты обладают колоссальным качественным разнообразием. Его масштабы уже на уровне видов потрясают: например, по современным оценкам, на Земле около 300 тыс. видов цветковых растений и около 2 млн видов насекомых. Еще больше разнообразие индивидуальных организмов: ведь при нормальном половом размножении каждый индивид генетически чем-то отличается от любого другого. Пока изучение живых объектов шло на уровне видов и организмов, можно было надеяться, что на более глубоком, молекулярном уровне качественное разнообразие удается свести к единым количественным закономерностям. Но молекулярная биология этих надежд не оправдала. Не обнаружилось и намеков на какую-либо единую закономерность, из которой бы вытекало, что при синтезе белка такая-то аминокислота должна кодироваться именно таким-то набором нуклеотидов, или что в таком-то белке последовательность аминокислот должна быть именно такой, или что именно такой-то, а не другой белок должен осуществлять определенную функцию и т. д.
Качественное разнообразие биологических объектов определяет наличие в биологии множества частных теорий, не сводимых в единую общую теорию. Таковы, например, теории одной из фундаментальных биологических дисциплин – систематики. Так, утверждение, что березы, широко распространенные в лесах нашей европейской части, Кавказа и Сибири, представляют собой два самостоятельных вида, березу бородавчатую и березу пушистую, – это частная теория, объясняющая те сходства и различия (в морфологии, цитологии, химии, генетике, экологии, распространении), которые мы наблюдаем, сравнивая отдельные экземпляры берез. При построении такой теории используются некоторые общие понятия или метатеории (в частности, понятие вида), тем не менее непосредственно вывести эту конкретную частную теорию из какой-либо общей нельзя; нельзя ее и ни к какой общей целиком свести. Другой вывод систематики растений – что береза и ольха представляют собой разные роды одного семейства – относится уже к иной частной теории, которая так же не сводима ни к какой более общей, а вместе с тем и совершенно независима от предыдущей теории, несмотря на то что и в той, и в другой фигурируют березы.
Как же быть с оценками «зрелости» или «незрелости» биологии по степени сходства ее теоретического багажа с теориями физическими или по степени сведения ее к количественным закономерностям? Думается, критерии эти выдвигаются без должных оснований. В этом можно убедиться на простом рассуждении. Если имеются некоторые общие критерии зрелости науки, они, очевидно, должны быть равно приложимы ко всем наукам, в том числе и к математике. А как по степени математизации определить зрелость самой математики? Считать ли ее зрелой наукой уже с того момента, когда наш далекий предок сумел констатировать, что 1 + 1 = 2? К тому же, то, что кажется зрелым сегодня, завтра может оказаться еще незрелым. Короче говоря, постановка вопроса о зрелости и выдвижение ее как цели, к которой должна стремиться биология, выглядит весьма сомнительно.
- Предыдущая
- 2/20
- Следующая