Как работает мозг. - Пинкер Стивен - Страница 43
- Предыдущая
- 43/53
- Следующая
У людей есть два режима мысли. Они могут формировать размытые стереотипы, автоматически усваивая корреляции свойств и опираясь на утверждение о том, что все явления в мире склонны делиться на группы (тот, кто лает, также должен кусаться и мочиться на пожарный гидрант). В то же время люди могут создавать системы правил – интуитивные теории, которые определяют категории с точки зрения применимых к ним правил и которые оценивают все члены категории одинаково. Во всех культурах есть системы формального родства – такие точные, что по ним можно доказывать теоремы. И в нашей собственной системе родства есть совершенно четкое определение того, что такое «бабушка»: это мать одного из родителей, и наплевать, печет она кексы или нет. Законодательство, арифметика, народные традиции, социальные условности (которые включают в себя и обряды перехода, четко отграничивающие взрослых от детей и холостяков от женатых мужчин) – все это примеры систем правил, в которые включены все люди на планете. Грамматика языка – это тоже одна из таких систем119.
Системы правил позволяют нам подняться над банальным сходством и сделать выводы, основанные на трактовке явлений. Как пишут Хинтон, Румельхарт и Мак-Клелланд, «людям хорошо дается обобщение только что полученных знаний. Если, к примеру, вы узнаете, что шимпанзе любят лук, вы, вероятно повысите свою оценку вероятности того, что гориллы тоже любят лук. В сети, которая использует распределенные репрезентации, такого рода обобщения производятся автоматически»120. Это смелое заявление – современный отголосок замечания Юма о том, что от тела, схожего с хлебом по цвету и консистенции, мы ожидаем аналогичной степени питательности. Тем не менее их предположение рушится в любом случае, когда речь идет о реальных знаниях человека. Конечно, любящие лук гориллы были взяты только ради примера, но интересно отметить, что авторы этого простого примера недооценивают наши способности. Даже зная немного о зоологии и совсем немного о гориллах, я уж точно не увеличил бы свою оценку вероятности того, что гориллы любят лук. Животных можно классифицировать по нескольким признакам. Их можно сгруппировать по генеалогии и сходству в одну таксономическую категорию, например, «человекообразные», но их также можно объединить в группы, которые отличаются друг от друга способом добычи пищи: всеядные, травоядные и плотоядные. Исходя из этого принципа, я могу рассуждать следующим образом. Шимпанзе – всеядные, поэтому неудивительно, что они едят лук; в конце концов, мы, будучи всеядными, тоже его едим. А вот гориллы – травоядные; они всю жизнь жуют дикий сельдерей, чертополох и другие растения. Травоядные могут быть очень привередливы в отношении видов, которыми они питаются, потому что их пищеварительный тракт оптимально приспособлен для того, чтобы устранять влияние ядов, содержащихся только в определенных видах растений (наиболее яркий пример – это коалы, которые специализируются на поедании листьев эвкалипта). Поэтому я бы не удивился, если бы гориллы не стали есть едкий лук, что бы там ни ели шимпанзе. В зависимости от того, какую систему классификации я имею в виду, шимпанзе и гориллы будут либо очень похожими соседями по таксономической категории, либо видами столь же разными, как люди и коровы121.
В рамках ассоциационизма и его реализации в форме коннектоплаз-мы то, как представлен объект (а именно в виде совокупности характеристик), автоматически заставляет систему делать определенные обобщения (если только она не была научена избегать подобного обобщения, намеренно предъявляя примеры обратного). Альтернатива, к которой я пытаюсь подвести, – это то, что человек может мысленно представить в символической форме виды объектов, причем используемые символы могут иметь отношение к целому ряду систем правил, которые мы все время держим в голове. (В теории искусственного интеллекта этот метод называется «обобщение, основанное на объяснении», а коннекционистские модели – это образец метода, называемого «обобщение, основанное на сходстве».) Наши системы правил выражают знание в форме композиционных, выраженных количественно рекурсивных суждений, и совокупности этих суждений смыкаются, образуя модули или интуитивные теории, касающиеся конкретных областей человеческого опыта: таких, как родство, интуитивная наука, интуитивная психология, числа, законы и язык. Некоторые из этих областей более подробно освещаются в главе 5122.
Что толку в четких категориях и системах правил? В социальном мире они могут послужить для разрешения спора между враждующими сторонами, каждая из которых ссылается на нечеткую границу категории: одна сторона заявляет, что тот или иной объект входит в категорию, а другая – что не входит. Обряды посвящения, достижение совершеннолетия, выдача дипломов, лицензий и других юридических документов – все эти события проводят четкие линии, благодаря которым каждый член общества может точно знать статус любого другого его члена. Подобным образом правила, не допускающие отступлений, являются хорошей защитой против тактики поэтапных мероприятий, когда кто-то пытается, пользуясь нечеткостью категории, постепенно отвоевать «территорию», выигрывая одно спорное дело за другим.
Правила и абстрактные категории помогают разобраться и в природе вещей. Обходя вопрос сходства, они позволяют нам проникнуть под внешний слой явлений и выяснить скрытые закономерности, в соответствии с которыми функционирует окружающий нас мир. А поскольку эти закономерности в определенном смысле слова цифровые, они придают репрезентациям точность и стабильность. Если сделать копию с аналоговой записи на магнитной пленке, а потом с копии сделать еще одну копию и так далее, качество записи будет ухудшаться с каждым «поколением». Но если сделать такую же цепочку копий в цифровом формате, качество последней будет нисколько не хуже первой. Подобным образом четкие символические репрезентации позволяют составлять логические цепочки, в которых символы дословно копируются в каждую из последующих мыслей, образуя то, что в логике называют термином «сорит»123:
Сорит позволяет мыслителю уверенно делать выводы, несмотря на ограниченный опыт. Так, мыслитель может сделать вывод, что воронам нужен кислород, даже если никто никогда не пытался лишить ворона кислорода и посмотреть, что произойдет. Мыслитель может прийти к этому выводу, даже если он никогда не наблюдал эксперимента, в котором какое бы то ни было животное было лишено кислорода, а только слышал об этом от заслуживающего доверия специалиста. Однако если каждый логический шаг в этом рассуждении будет нечетким, или вероятностным, или осложненным частными характеристиками представителей категории предыдущего логического шага, коэффициент ухудшения будет постепенно расти. Последнее утверждение будет таким же зашумленным, как энная пиратская копия видеокассеты или последняя произнесенная шепотом фраза в игре «сломанный телефон». Представители всех цивилизаций могут выстраивать длинные цепочки рассуждений из звеньев, истинность которых они не наблюдали непосредственно. Философы неоднократно указывали на то, что именно эта способность сделала возможным существование науки123.
Как и многие другие проблемные вопросы, связанные с мышлением, полемику по поводу коннекционизма нередко сводят к полемике между врожденностью и обучением. И, как всегда в таких случаях, это затрудняет способность четко мыслить. Несомненно, обучение играет огромную роль в моделировании коннекционных сетей. Часто разработчик сетей, вынужденный вернуться к чертежной доске из-за проблем, о которых я говорил выше, решает воспользоваться способностью сети со скрытыми уровнями запоминать совокупности входов и выходов и распространять их на новые подобные им данные. Иногда можно даже заставить типовую сеть со скрытыми уровнями делать то, что вам нужно, предварительно заучив ее «до смерти». Тем не менее обучение в авральном режиме само по себе не может быть спасением для коннектоплазмы. И не потому, что у сетей слишком мало «врожденной» структуры и слишком много информации на входе из окружения, а потому что у грубой коннектоплазмы так мало мощности, что иногда приходится создавать сети, используя самую худшую комбинацию: слишком малое количество врожденной структуры в сочетании со слишком большим количеством информации на входе из окружения.
- Предыдущая
- 43/53
- Следующая