Как работает мозг. - Пинкер Стивен - Страница 38
- Предыдущая
- 38/53
- Следующая
Представители научной школы, получившей название «коннекционизм», во главе с психологами Дэвидом Румельхартом и Джеймсом Мак-Клелландом, утверждают, что простые сети сами по себе отвечают за преобладающую часть человеческого интеллекта. В своей крайней форме коннекционизм гласит, что мышление – это одна большая сеть обратного распространения ошибок скрытого уровня, или, возможно, группа из похожих или идентичных сетей, и интеллект формируется за счет того, что учитель – среда – настраивает веса связей. Единственная причина, по которой люди умнее крыс, состоит в том, что в наших сетях между стимулом и реакцией больше скрытых уровней, и мы живем в среде других людей, которые выступают в роли учителей сети. Правила и символы могут быть полезны как приближенная модель того, что происходит в сети, для психолога, который не может угнаться за миллионами потоков возбуждения, протекающих в связях, но не более того103.
Другой подход – который мне нравится больше – состоит в том, что одни только нейронные сети не могут выполнить всю работу. В значительной мере человеческий интеллект объясняется структурированием сетей на программы манипулирования символами. В частности, манипулирование символами лежит в основе языка и тех компонентов мышления, которые с ним взаимодействуют. Этим когнитивная способность не ограничивается, но это значительная ее часть. Это все, о чем мы можем рассуждать про себя и в разговоре с другими. Занимаясь психолингвистикой, я собрал множество доказательств того, что даже простейший навык, связанный с говорением на английском языке, – такой, как умение образовывать форму прошедшего времени от глагола (walked от walk, came от come) – с вычислительной точки зрения слишком сложен, чтобы его могла обслуживать одна нейронная сеть104. В этом разделе книги я представлю более общие доказательства. Требует ли содержание наших повседневных мыслей (информация, которой мы обмениваемся в разговоре) вычислительного устройства, предназначенного для реализации глубоко структурированного мыслекода, или с ним может справляться нейронная сеть общего назначения – то, что один остряк назвал «коннекто-плазмой»?105 Я покажу вам, что наши мысли отличаются тонким логическим структурированием, которое не под силу никакой сети однородных уровней, состоящей из узлов.
Зачем нам это, спросите вы? Затем, что эти доказательства ставят под сомнение наиболее авторитетную теорию устройства нашего мышления из когда-либо предложенных учеными. Сам по себе персептрон или сеть со скрытыми уровнями – это высокотехнологичное воплощение старой теории об ассоциации идей. Британские философы Джон Локк, Дэвид Юм, Джордж Беркли, Дэвид Хартли и Джон Стюарт Милль утверждали, что мысль подчиняется двум законам. Первый – закон смежности: между идеями, которые часто встречаются вместе, в мышлении образуются ассоциации. Впоследствии, когда активизируется одна идея, активизируется и вторая. Второй закон – это сходство: когда две идеи обладают сходством, все, что ассоциируется с первой идеей, автоматически начинает ассоциироваться со второй. Юм таким образом резюмировал суть этой теории в 1748 году:
Опыт лишь показывает нам ряд единообразных действий, производимых определенными объектами, и учит нас, что такие-то объекты в такое-то время обладали известными способностями и силами. Когда появляется новый объект, обладающий подобными чувственными качествами, мы ожидаем, что найдем в нем подобные же силы и способности, и ждем от него такого же действия. От тела одинакового с хлебом цвета и плотности мы ожидаем сходной же питательности и способности поддерживать организм106[12].
Ассоциацию по смежности и сходству считали тем самым писцом, который пишет на знаменитой «чистой доске» (так Локк метафорически называл мозг новорожденного). Теория, получившая название «ассоциационизм», веками играла доминирующую роль во взглядах британских и американских ученых на работу мышления, и в определенной степени доминирует и по сей день. Когда «идеи» заменили стимулы и реакции, ассоциационизм превратился в бихевиоризм. Чистая доска и два универсальных закона обучения являются психологической основой и стандартной социологической модели. Отзвуки этой теории мы слышим и в расхожих фразах о том, как наше воспитание заставляет нас «ассоциировать» еду с любовью, богатство со счастьем, рост с властью и т. д.
До недавнего времени ассоциационизм был слишком абстрактной теорией, чтобы быть проверенным на практике, однако модели нейронных сетей, которые сейчас ничего не стоит создать с помощью компьютера, позволяют сделать его идеи более точными. Схема обучения, в которой учитель дает сети вход и правильный выход, а сеть старается в будущем воспроизвести это соответствие, представляет собой очень хорошую модель закона смежности. Распределенная репрезентация входа, при которой концепт не получает собственного узла («попугай»), а представляется паттерном активности узлов, соответствующих его свойствам («покрытый перьями», «имеет крылья» и т. д.), позволяет добиться автоматического распространения на подобные концепты и, таким образом, прекрасно вписывается в закон об ассоциации по сходству. А если допустить, что все части мышления устроены как подобного рода сеть, то мы получим реализацию идеи чистой доски. Итак, коннекционизм открывает перед нами прекрасные возможности. Увидев, что могут и чего не могут делать модели нейронных сетей, мы можем подвергнуть серьезному испытанию многовековую доктрину ассоциации идей.
Прежде чем начать, необходимо сразу отмести несколько ложных аргументов. Коннекционизм – не альтернатива вычислительной теории сознания, а ее разновидность, которая утверждает, что основной вид обработки информации, выполняемый мозгом, – это многомерный статистический анализ. Коннекционизм не является необходимой коррективой теории о том, что мозг подобен серийному компьютеру с действующим быстро и безошибочно центральным процессором, – никто этого и не утверждает. В реальной жизни нет Ахилла, который заявлял бы, что всякая форма мышления заключается в прокручивании в голове тысячи правил из учебника по логике. Наконец, сети связей не являются особенно реалистичными моделями мозга, невзирая на приклеившееся к ним оптимистичное название «нейронные сети». К примеру, так называемый «синапс» (вес связи) может переходить из возбужденного состояния в заторможенное, а по «аксону» (соединению) информация может поступать в обоих направлениях. С анатомической точки зрения и то и другое невозможно. Когда стоит выбор между тем, чтобы поскорее решить задачу, и тем, чтобы как можно точнее воспроизвести работу мозга, коннекционисты нередко выбирают первое; это говорит о том, что сети используются как форма искусственного интеллекта, лишь косвенно основанная на сравнении с нейронами, и не являются формой моделирования нейронной активности. Вопрос в том, действительно ли они осуществляют такие вычисления, которые можно считать моделью человеческого мышления?
Грубая коннектоплазма не способна воспроизвести пять особенностей повседневного мышления. Эти особенности на первый взгляд кажутся малозаметными, о их существовании даже не подозревали до тех пор, пока логики, лингвисты и специалисты по информатике не начали разглядывать под микроскопом значение предложений. Тем не менее именно они дают человеческой мысли ее неповторимую точность и силу, являясь, как мне кажется, важным элементом ответа на вопрос «Как работает мышление?».
Первая особенность – это способность работать с индивидным объектом. Давайте вернемся к первому отличию нейронных сетей от их компьютероподобных моделей. Вместо того, чтобы символически представлять объект в виде произвольного шаблона из последовательности битов, мы представляли его в виде шаблона из узлов одного уровня, каждый из которых соответствовал одному из свойств объекта. Перед нами тут же встает проблема: мы уже не можем отличить друг от друга два отдельных объекта с идентичными свойствами. Они представлены совершенно одинаковым образом, и система не обращает внимания на то, что перед ней – не один и тот же кусок физической материи. Мы потеряли индивидуальность объекта: мы можем создать репрезентацию овоща или лошади как понятия, но не конкретного овоща и не конкретной лошади. Все, что система узнает об одной лошади, будет сливаться с тем, что она знает о другой лошади, идентичной первой. Естественного способа представить двух разных лошадей нет. Если увеличить активность узлов, представляющих свойства лошади, вдвое, это не поможет, потому что система может решить, что это двойная степень уверенности в том, что присутствуют свойства лошади или что свойства лошади присутствуют в двойной степени.
- Предыдущая
- 38/53
- Следующая