Выбери любимый жанр

История греческой философии в её связи с наукой - Гайденко Пиама Павловна - Страница 38


Изменить размер шрифта:

38

Таким образом, движение геометрической точки совершается не в умопостигаемом мире, но и не в мире телесном; оно совершается в воображаемом мире: точка движется в фантазии. Такое название у Прокла получила способность, которая, согласно Платону, подобна сну. И в прямом соответствии с утверждением Платона, что чертежи на песке представляют собой только чувственные подобия геометрических фигур, Прокл далее говорит о том, что телесное движение карандаша по бумаге есть лишь телесный аналог, телесный образ движения бестелесной точки по бестелесной "бумаге" пространству, т.е. движение, совершаемое в фантазии.

Промежуточная способность теперь названа "фантазией", а промежуточное бытие - "интеллигибельной материей". Нам думается, что хотя термины эти принадлежат Проклу, но онтологический статус объектов геометрии определен им вполне в духе философии математики Платона. Если позиция Спевсиппа в некоторых пунктах и не вполне совпадала с платоновской, то в рассматриваемом вопросе она, как нам кажется, весьма близка к платоновской.

Теперь к вопросу о линейке и циркуле: видимо, Платон признавал эти инструменты подходящими только для того, чтобы представить нашему "телесному зрению" те фигуры, которые мы реально "порождаем" в фантазии; чертежи на песке или на бумаге казались ему чем-то вроде "вторых подобий" так же, как и произведения искусства. Почему вторых? Потому что даже движение точки в фантазии есть нечто вторичное, оно предполагает материю, хотя и "интеллигибельную"; а движение стилета по восковой дощечке есть уже чувственное подобие движения точки в фантазии.

Исходя из сказанного, можно сделать следующий важный вывод: древнегреческая наука принципиально не могла последовательно провести мысль о том, что геометрический объект - точка - движется в материальном мире. Даже у Архимеда и Герона еще не было той формы связи между механикой и геометрией, какая возникла только в эпоху Возрождения и благодаря которой стало возможным совсем новое истолкование математической программы античности.

Иерархия математических наук

Мы выяснили, в чем Платон видел различие между числами и геометрическими фигурами. Понятно, что различие в онтологическом статусе арифметических и геометрических объектов должно обусловливать, согласно Платону, также и познавательную значимость этих двух математических наук. Арифметика поэтому является первой в ряду наук и наиболее логически обоснованной. Что касается геометрии, то она не имеет строго логического обоснования, ибо ее элементы нуждаются для своего обоснования также в "интеллигибельной материи" пространстве. Для геометрии наглядность ("созерцание") необходима, для арифметики - нет. Тем не менее все математические науки имеют в глазах Платона высокий ценностный статус: все они в той или иной мере причастны к постижению высшего бытия, а потому и должны почитаться как средства к высшему познанию.

Большинство историков науки согласны между собой в том, что греческая математика отличается от средневековой и особенно от математики нового времени. К характерным ее чертам принадлежит, в частности, специфическое отношение к числу, носящее ярко выраженный аксиологический характер. Такое отношение к числу особенно характерно для математиков и философов, принадлежащих к пифагорейской школе и к платоновской Академии. Анализ платоновских произведений показывает, как складывалось и чем мотивировалось ценностное отношение к математике.

Само происхождение знаний о числе представляется Платону достойным всякого почитания. "Давайте рассмотрим, - говорит он, - как мы выучились считать. Скажите: откуда у нас появилось понятие единицы, двойки? Почему только мы одни из всех живых существ по своей природе можем иметь такое понятие?.. Нам впервые привил Бог понимание того, что нам показывают, а затем он показал нам число и показывает до сих пор. Происходит беспрестанная смена многих ночей и дней. Небо совершает это беспрестанно, научая людей понятию о единице и двойке, так что, наконец, и самый неспособный человек оказывается в состоянии усвоить счет. Созерцая это, каждый из нас может получить понятие о числах "три", "четыре" и о множественности".

Счет, таким образом, есть нечто священное уже потому, что ему нас научило Небо. То, что математика на Востоке с самых древних времен связана была с астрономией, в этом нет сомнения, и это, собственно, Платон и имеет в виду. Однако математика, как и астрономия, была связана и с практическими нуждами, но эту ее функцию Платон, как мы уже видели, считает производной и второстепенной.

Дарованная нам Небом наука о числе, согласно Платону, не может содержать в себе ничего дурного, отрицательного. Вот отрывок, где дается ценностная характеристика числа: "Что число не вызывает ничего дурного, это легко распознать, как это вскоре и будет сделано. Ведь чуть ли не любое нечеткое, беспорядочное, безобразное, неритмичное и нескладное движение и вообще все, что причастно чему-нибудь дурному, лишено какого бы то ни было числа. Именно так должен мыслить об этом тот, кто собирается блаженно окончить свои дни. Точно так же никто, не познав [числа], никогда не сможет обрести истинного мнения о справедливом, прекрасном, благом и других подобных вещах и расчислить это для самого себя и для того, чтобы убедить другого" (курсив мой. - П.Г.).

Таким образом, число внутренне связано с прекрасным, благим и священным, а потому отнюдь не есть нечто нейтральное по отношению к ценностям. Именно с понятием числа Платон связывает порядок, упорядоченность, ритм, склад (лад), гармонию, согласованность, меру, соразмерность, а все это - атрибуты не только прекрасного, но и доброго, благого, оно же и истинное. Поэтому в самом числе выделяется и подчеркивается прежде всего то, что несет эти атрибуты.

Первой среди математических наук Платон считает арифметику. Арифметика, "главная и первая из наук - это наука о самих числах, но не о тех, что имеют предметное выражение, а вообще о зарождении понятий "чет" и "нечет" и о том значении, которое они имеют по отношению к природе вещей. Кто это усвоил, тот может перейти к тому, что носит весьма смешное имя геометрии. На самом деле ясно, что это наука о том, как выразить на плоскости числа, по природе своей неподобные".

Два числа, ab и cd, называются подобными в том случае, если их множители "стороны" (как говорят античные математики, тем самым указывая на то, что число мыслится ими геометрически) - пропорциональны, т.е. a:c = b:d. Если же числа оказываются неподобными, то их можно уподобить, представив как площади подобных прямоугольников; задача уподобления двух чисел ab и cd предстает тогда как задача нахождения средних пропорциональных m и l, так что площади ab и cd относятся как m2:l2. Таким образом, задача нахождения средних пропорциональных с целью "уподобления" чисел мыслится Платоном как центральная проблема геометрии. Установление пропорциональных отношений, как видим, оказывается не одной из задач математики наряду с прочими, а центральной ее темой.

"Вслед за этой наукой идет еще одна, ей подобная: люди, ею занимающиеся, также назвали ее геометрией. Наука эта изучает тела, имеющие три измерения и либо подобные друг другу по своей кубической природе, либо неподобные, приводимые к подобию с помощью искусства". Речь идет, как нетрудно заметить, о стереометрии, которой Платон отводил важное место среди математических наук. Главной ее задачей он тоже считал установление пропорциональных отношений.

В сочетаниях Платона рассматриваются три вида пропорций: арифметическая, геометрическая и гармоническая. Так, в "Тимее", объясняя принцип построения космоса демиургом, Платон приводит сложное числовое построение, в основе которого лежит система пропорциональных отношений: "...в каждом промежутке было по два средних члена, из которых один превышал меньший из кратных членов на такую же его часть, на какую часть превышал его больший, а другой превышал меньший крайний член и уступал большему на одинаковое число". Здесь Платон дает определение гармонической и арифметической пропорции. Если средний член превышает меньший из крайних на такую его часть, на какую сам он превышается большим крайним членом, мы имеем гармоническую пропорцию. Так, для двух чисел - 6 и 12 - гармонической средней будет 8. Гармоническая пропорция - это 6, 8, 12, т.е. 1, 11/3, 2. Если же средний член превышает меньший из крайних на такое же число, на какое его самого превышает больший крайний, то пропорция будет арифметической: 6, 9, 12 или 1, 11/2, 2. Есть у Платона и третий вид пропорции, хотя он его не определяет в приведенном отрывке, - геометрическая пропорция: второй член должен так относиться к третьему, как первый - ко второму: 1, 2, 4.

38
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело