Философия. Античные мыслители - Гутнер Григорий - Страница 6
- Предыдущая
- 6/20
- Следующая
Рассуждение Парменида о бытии имеет один интересный оборот. Как бы походя, он производит некий незаконный ход мысли[26], заставляя нас рассуждать о том, о чем рассуждать невозможно, о небытии. В самом деле, выявив характеристики бытия, мы одновременно описали и небытие. Оно изменчиво, временно, множественно, воспринимаемо чувствами, но непостижимо для ума. Небытие беспредельно. Нет никакой границы для бесконечного изменения, постоянной смены форм. То, что не удерживается в заданных пределах, немыслимо, потому что оно не обладает никакой определенностью, все время другое, т. е. никакое. Здесь весьма важно именно это противопоставление. Также как бытие противостоит небытию, в человеческой душе знание противостоит мнению. Последнее есть суждение, составленное на основании чувств, т. е. суждение о меняющемся и множественном. Парменид, завершив разговор о бытии, посвящает часть своей поэмы таким суждениям, рассказывая о том, что мы видим глазами: о Луне, Солнце, звездах, смене дня и ночи. Этот рассказ он предваряет многозначительным предупреждением: «…мнения смертных отныне учи ты, лживому строю стихов моих нарядных внимая»[27](курсив мой. —Г. Г.). Мнения смертных, суждения, составленные на основании чувств, заранее объявляются ложью. Истину следует искать только в области умопостигаемого, т. е. в рассуждении о бытии. То, что мы видим, слышим, обоняем и т. д., есть лишь морок, мнимость. Интересно, что слово «мнение», передающее в нашем языке греческое слово doxa, происходит от глагола «мнить», т. е. мыслить несуществующее.
Парменид, таким образом, находит условия ясного знания. Оно возможно лишь в отношении неизменного, а следовательно, определенного, имеющего фиксированную форму. Только такое сущее действительно есть и о нем можно ясно мыслить. Изменчивое и множественное – неопределенно, бесформенно и немыслимо.
Остановимся еще ненадолго на рассуждении Парменида о бытии. Оно то, что мыслится ясно. В чем, однако, состоит эта ясность? Наша попытка воспроизвести логику Парменида, предпринятая только что, упускает важную особенность рассуждения. Приведем небольшой фрагмент Парменида, в котором дается характеристика бытия:
Ясность, с которой уму предстает бытие, определяется образами необходимости, или судьбы (Ананкэ). Здесь не просто строгая логика. Здесь «оковы» неизбежности, абсолютная невозможность быть и мыслить иначе. Парменид представляет нам не изящную точность геометрического построения, а грубую очевидность сущего. Мыслить то, что есть, значит мыслить с необходимостью, подчиняясь судьбе. Ясность означает безусловную явленность того, что есть, причем есть именно так.
Обратим внимание на своеобразный спор Парменида с Анаксимандром. Последний счел началом всего беспредельное. Для Парменида же беспредельное не существует и немыслимо. Есть то, что имеет предел, и ясность понимания состоит в установлении предела. Мысль, устремленная к началу, не теряется в бесконечности, а определяет, т. е. ограничивает свой предмет. Определение это состоит в строгом различении бытия и небытия. Мысль отделяет одно от другого. Впрочем, рассуждая так, мы, по-видимому, неточны. Для Парменида мысль не отделена от своего предмета: «мыслить – то же, что быть»[29].
Развитие этой мысли мы находим у ученика Парменида – Зенона.
Он демонстрирует мнимость нашего чувственного восприятия с помощью особых аргументов, известных как апории. Его задача – показать, что все, воспринимаемое нами чувствами, немыслимо, а следовательно, не существует. В известных сейчас апориях речь идет о двух таких «мнимостях»: движении и множестве. Мы приведем здесь две апории, демонстрирующие характер рассуждений Зенона и показывающие невозможность движения[30].
Первая из этих апорий показывает, что движущаяся стрела в действительности покоится. В этом рассуждении Зенон полагает, что время, в частности время полета стрелы, состоит из отдельных моментов. Каждый из таких моментов неделим далее. В каждый такой момент стрела занимает определенное место, т. е. покоится в этом месте. Тот факт, что стрела покоится, вытекает из неделимости момента времени. Если бы происходила перемена места, мы должны были бы признать длительность момента, что невозможно. Но коль скоро стрела находится в покое в любой момент времени, то она вообще не движется.
Вторая апория называется «Ахиллес и черепаха» и утверждает, что быстрый бегун не сможет догнать медленно ползущую черепаху. Предположим, для определенности, что бегун бежит в два раза быстрей черепахи. До начала погони их разделяет некоторое расстояние. Когда преследующий пробежит это расстояние, черепаха отползет наполовину. Когда он преодолеет эту половину, она отползет еще на четверть и т. д. Сколько бы ни бежал преследователь, его всегда будет отделять от черепахи некоторое расстояние.
К этим рассуждениям Зенона можно сделать несколько комментариев. Первый состоит в том, что, по мысли Зенона, рассуждение приводит к выводам, опровергающим наши чувства. Мы вроде бы видим, что стрела летит, а бегун догоняет черепаху. Рассуждение же показывает, что это невозможно. Чувство, уверяющее нас, что движение существует, нас обманывает.
Второй комментарий относится к логической структуре аргументации. Заметим, что для убедительности рассуждения недостаточно было рассмотреть одну апорию. Каждая из приведенных апорий опирается на определенную предпосылку. В апории «Стрела» эта предпосылка высказана явно: время состоит из неделимых моментов. Именно на этом основании мы приходим к выводу, что движущаяся стрела всегда остается на месте. Но возможно мы просто исходим из ложной посылки и время, в действительности, не состоит из неделимых моментов. В таком случае нам следует принять противоположную посылку: время делимо до бесконечности. Но именно это допущение приводит к апории об Ахиллесе и черепахе. Таким образом, оказывается, что движение в самом деле невозможно, а существует лишь покоящееся.
Чтобы завершить разговор об апориях, нужно сказать об Ахиллесе и черепахе еще несколько слов. Может возникнуть впечатление, что эта апория легко опровергается, если вспомнить о сходящихся бесконечных рядах. Приняв исходное расстояние между Ахиллесом и черепахой за i, можно сказать, что Ахиллес догонит черепаху, пробежав расстояние, выражаемое бесконечной суммой:
1 + 1/2 + 1/4+1/8 +…
Этот ряд, как известно, сходится, т. е. его сумма, несмотря не бесконечное число членов, равна конечной величине, а именно 2. Следовательно, пробежав расстояние равное 2, Ахиллес таки догонит черепаху!
Однако не все так просто. Попробуем уточнить, что такое сумма бесконечного ряда. По определению, если говорить об этой задаче, она есть предел последовательности конечных сумм вида:
S1 = 1
S2 = 1+1/2
S3 = 1+1/2+1/4
S4 = 1+1/2+1/4+1/8
S5 = 1+1/2+1/4+1/8+1/16
…………………………………
- Предыдущая
- 6/20
- Следующая