Выбери любимый жанр

Искусство схемотехники. Том 3 (Изд.4-е) - Хоровиц Пауль - Страница 56


Изменить размер шрифта:

56

13.21. Специальные методы конструирования

ВЧ-«дроссели» (небольшие индуктивности — от микрогенри до миллигенри) широко используются в качестве элементов, блокирующих сигнал. Обычно напряжение питания должно подаваться на клеммы корпуса, в котором размещены экранированные «проходные конденсаторы» (параллельный отвод на землю в сочетании с механическими зажимами на противоположных концах), и на ВЧ-дроссель, соединенные последовательно. Отличие состоит в применении ферритовых шайб на выводах транзисторов, ПТ и пр. Их использование связано с тем, что ВЧ-схемы могут генерировать «паразитные» колебания, вызываемые «паразитными» резонансными контурами СВЧ-диапазона, образуемыми самой проводкой. Нанизывание в разных местах нескольких шайб на выводы базы или коллектора увеличивает индуктивность настолько, что можно предотвратить колебания (если вам, конечно, повезет). Индуктивности играют главную роль в ВЧ-устройствах, поэтому в них часто можно встретить множество открытых катушек и индуктивностей с «настраиваемым сердечником», а также трансформаторов (например, маленькие металлические трансформаторы ПЧ встречаются почти во всех приемных устройствах). Распространены также переменные конденсаторы небольшой емкости с воздушным зазором.

Как сказано выше, ВЧ-схемы устанавливаются в защищенных корпусах и часто имеют внутренние заземленные экраны между частями схемы, чтобы предотвратить их непредусмотренное взаимодействие. Чаще всего схемы строятся на двусторонних печатных платах, где одна сторона используется в качестве заземленной плоскости, или же схемы устанавливаются в непосредственной близости от экранов или других заземленных поверхностей. Землю в ВЧ-диапазоне нельзя делать слабой; вы должны пропаивать экран по всей длине и использовать множество винтов при установке перегородок или крышки.

При построении схем, рассчитанных на особо высокие частоты, абсолютно необходимо выводы компонентов делать как можно короче. Это значит, что выводы резисторов и конденсаторов должны обрезаться почти под самый корень и припаиваться так, чтобы они почти не были видны (компоненты при пайке сильно нагреваются, но они обычно это выдерживают). В области СВЧ и УВЧ часто пользуются керамическими «чипами» конденсаторов, припаиваемых прямо на полоски печатных схем и т. п. вообще без выводов. Если вы используете обычные конденсаторы, то их внутренняя индуктивность может вызывать саморезонансные явления даже при таких низких частотах, как мегагерцы. Для СВЧ вообще более предпочтительно пользоваться широкими проводящими полосами и металлическими лентами, а не обычными проводами, так как при этом уменьшается индуктивность соединений. В этом диапазоне используются полосковые линии и микрополоски, где каждый вывод является сам по себе линией передачи с согласованным импедансом. Действительно, полоски листового металла могут быть использованы как части настраиваемых контуров; для примера посмотрим описание индуктивностей в цепи на 440 МГц (ARRL handbook): «L1 - L3 включительно - полоска латуни 65x6 мм, припаиваемая одним концом к корпусу, а другим — к конденсатору. Отводы входа и выхода отстоят на 12,5 мм от заземленного конца». Конечно, все основные методы в микроволновой технике сводятся к использованию в схемах волноводов и полых цепей с такими экзотическими компонентами, как циркуляторы и «магические Т» (разветвители — см. рис. 13.47).

Искусство схемотехники. Том 3 (Изд.4-е) - _132.jpg

Рис. 13.47. Волноводный ответвитель «магическое Т».

Что может удивить новичка в ВЧ-устройствах, так это использование измерительных и испытательных приборов в сочетании с методикой «разрежь и попробуй». Широко распространены генераторы качающейся частоты или свип-генераторы (источники ВЧ-сигналов с периодической разверткой по всему диапазону частот), сеточные измерители (для измерения резонансов), мосты для измерения С/Ш и анализаторы спектра, и все это в сочетании с многочисленными экспериментами со схемами. На этих частотах ничего нельзя точно предсказать, поэтому, для того чтобы создать хорошо работающую схему, приходится проводить множество экспериментов по методу проб и ошибок.

13.22. Экзотические ВЧ-усилители и устройства

Известные приборы, такие, как биполярные транзисторы и ПТ, используются и на СВЧ, хотя часто имеют до некоторой степени необычное воплощение. Например, транзисторы, предназначенные для работы в области очень высоких частот, имеют довольно странный корпус с плоскими выводами, служащими для соединения с неизолированными печатными проводниками на плате и исходящими радиально от центра (рис. 13.48). Мы перечислим и такие устройства и схемы, для которых нет аналогов в низкочастотной технике.

Искусство схемотехники. Том 3 (Изд.4-е) - _133.jpg

Рис. 13.48.

Параметрические усилители. В этих устройствах усиление осуществляется изменением параметра перестраиваемого контура. Это очень похоже на маятник с грузом, подвешенным на длинной веревке. Предположим, что движение груза представляет собой выходной сигнал. Вы можете создать колебания, мягко толкая груз с резонансной частотой; в обычных усилителях эти «толчки» производятся транзисторами или другими активными приборами. Но имеется другой, совершенно отличающийся метод раскачки, а именно путем подъема и опускания веревки (изменяется ее длина, параметр системы) с частотой, удвоенной по сравнению с естественной резонансной частотой. Попробуйте его (рис. 13.49).

Искусство схемотехники. Том 3 (Изд.4-е) - _134.jpg

Рис. 13.49. Маятник — аналог параметрического усилителя.

Маятник является точным аналогом параметрического усилителя Адлера. В параметрическом усилителе изменяют емкость настраиваемого контура, используя варикап (емкость, управляемую напряжением), который управляется сигналами «накачки». Эти усилители используются в схемах с низким уровнем шума.

Мазеры. Мазер — это аббревиатура: микроволновый усилитель с индуцированным испусканием излучения. В основном это квантовые или атомные или молекулярные усилители, очень сложные в изготовлении и использовании, но в этих усилителях обеспечивается самый низкий уровень шумов.

Полевые транзисторы на GaAs (арсенид галлия). Последнее слово в области микроволновых усилителей. Без особых усилий достигаются такие же характеристики, что и в параметрических усилителях. В настоящее время промышленные ПТ на GaAs выпускаются с усилением 28 дБ при 10 ГГц и с коэффициентом шума 2 дБ. В последнее время появились ПТ на GaAs с низким уровнем шумов — так называемые транзисторы с высокой подвижностью электронов (ВПЭТ). В экспериментальных охлаждаемых усилителях они имеют удивительную характеристику шума (например, 0,12 дБ (Тш= 8 К) при 8,5 ГГЦ).

Клистроны и лампы бегущей волны (ЛЕВ). Работа усилительных вакуумных ламп, используемых в микроволновой области частот, клистронов и ЛБВ, основана на эффектах, связанных с временем пролета электронов внутри лампы. Разновидность, называемая отражательным клистроном, работает обычно только в качестве генератора благодаря тому, что в нем электронный пучок отражается обратно в сторону источника электронов. Существуют клистроны с непрерывной мощностью 0,5 МВт на выходную частоту до 2000 МГц.

Магнетроны. Сердце радаров и индукционных печей. Это высокомощная генераторная лампа с маленькими резонансными полостями. При помещении магнетрона в сильное электромагнитное поле электроны внутри резонаторов движутся по спирали.

56
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело