Искусство схемотехники. Том 1 (Изд.4-е) - Хоровиц Пауль - Страница 104
- Предыдущая
- 104/146
- Следующая
Активные фильтры можно использовать для реализации фильтров нижних и верхних частот, полосовых и полосно-подавляющих фильтров, выбирая тип фильтра в зависимости от наиболее важных свойств характеристики, таких, как максимальная равномерность усиления в полосе пропускания, крутизна переходной области или независимость времени запаздывания от частоты (далее об этом подробнее). Кроме того, можно построить как «всепропускающие фильтры» с плоской амплитудно-частотной характеристикой, но нестандартной фазочастотной характеристикой (они также известны как «фазовые корректоры»), так и наоборот — фильтр с постоянным фазовым сдвигом, но с произвольной амплитудно-частотной характеристикой.
Конвертеры отрицательного полного сопротивления и гираторы. Есть два интересных схемных элемента, которые следует упомянуть в любом обзоре: это — конвертер отрицательного полного сопротивления (КОС) и гиратор. Эти устройства могут имитировать свойства катушек индуктивности, хотя в них кроме ОУ используются только конденсаторы и резисторы.
Раз это так, то мы можем делать безиндуктивные фильтры с идеальными свойствами RLС-фильтра, таким образом — это по крайней мере один из способов реализации активных фильтров. КОС преобразует полное сопротивление в ему противоположное (т. е. с обратным знаком), в то время как гиратор преобразует полное сопротивление в обратное (т. е. емкость в индуктивность). Следующие упражнения помогут уяснить, как это происходит.
Упражнение 5.1. Покажите, что изображенная на рис. 5.4 схема представляет собой конвертер полного сопротивления, в частности что Zвх = — Ζ. Подсказка: подайте на вход какое-нибудь напряжение U и вычислите входной токI. Затем возьмите их отношение, чтобы найти Zвх = U/I.
Рис. 5.4. Преобразователь (конвертер) полного отрицательного сопротивления
Упражнение 5.2. Покажите, что схема на рис. 5.5 есть гиратор, в частности что Zвх = R2/Z. Подсказка: эту схему можно рассматривать как набор делителей напряжения, начиная справа. Таким образом, КОС превращает конденсатор в «обратную» катушку индуктивности:
ZС = 1/jωC —> Zвх = j/ωC,
т. е. в том смысле, что порождаемый ток запаздывает относительно приложенного напряжения, а его полное сопротивление имеет неправильную частотную зависимость (при возрастании частоты оно не растет, а убывает). Гиратор же, напротив, превращает конденсатор в элемент с истинной индуктивностью:
ZС = 1/jωC —> Zвх = jωCR2,
т. е. индуктивность которого L = CR2.
Рис. 5.5.
Существование гиратора делает интуитивно ясным тот факт, что можно построить безындуктивный фильтр, имитирующий любой фильтр, использующий катушки индуктивности: просто заменить каждую катушку «гиратированным» конденсатором. Такое применение гираторов вполне корректно, и ранее упомянутый телефонный фильтр построен именно таким способом. Кроме того, простая вставка гираторов в существующие RLC-схемы позволяет создавать много иных структур фильтров. Проектирование активных безындуктивных фильтров — весьма активно развивающаяся область, и описания новых конструкций появляются в журналах каждый месяц.
Фильтры Саллена и Ки. На рис. 5.6 приведен пример простого фильтра, построенного даже отчасти из интуитивных соображений. Он известен как фильтр Саллена и Ки, по имени его изобретателей. Здесь в качестве усилителя с единичным коэффициентом усиления может использоваться ОУ, включенный в режиме повторителя, либо просто эмиттерный повторитель.
Рис. 5.6.
Данный фильтр представляет собой двухполюсный фильтр верхних частот. Следует отметить, что это был бы просто двухкаскадный RС-фильтр, если бы первый резистор не был соединен с выходом. Легко показать, что на очень низких частотах наклон характеристики такой же, как и у RС-фильтра, поскольку выходной сигнал практически равен нулю. Рост же выходного сигнала при увеличении его частоты приводит к уменьшению ослабления в результате действия этой следящей связи, и за счет этого становится более резким излом характеристики.
Конечно, такое объяснение на пальцах не может заменить полного расчета, уже, к счастью, проделанного для огромного числа хороших фильтров. Мы вернемся к схемам активных фильтров в разд. 5.06.
5.04. Критерии режима работы фильтра Ки
При анализе фильтров и при расчете их параметров всегда используются некоторые стандартные термины и имеет смысл придерживаться их с самого начала. Частотная область. Наиболее очевидной характеристикой фильтра является зависимость его коэффициента передачи от частоты; типичный случай — характеристика фильтра нижних частот, показанная на рис. 5.7.
Рис. 5.7. Частотные характеристики фильтров, а — коэффициент усиления (логарифмический масштаб), б и в — сдвиг фазы и временное запаздывание (линейный масштаб).
Здесь полоса пропускания представляет собой область частот, которые сравнительно мало ослабляются фильтром. Чаще всего считается, что полоса пропускания простирается до точки, соответствующей значению затухания — 3 дБ, но для некоторых фильтров (среди них замечательны фильтры с «равновеликими пульсациями») граница полосы пропускания может быть определена несколько иначе. Внутри же полосы пропускания характеристика может быть неравномерной, или пульсирующей, с определенным диапазоном (полосой) пульсаций характеристики, как это и показано на рисунке. Частота среза fс определяет границу полосы пропускания. Далее характеристика фильтра проходит через переходную область (известную также как «склон» характеристики фильтра) к полосе задерживания — области значительного ослабления. Полосу задерживания можно определить через некоторое минимальное затухание, например 40 дБ.
Наряду с характеристикой коэффициента передачи в частотной области важен и другой параметр, а именно сдвиг фазы выходного сигнала по отношению к входному. Другими словами, нас интересует комплексная частотная характеристика фильтра, которая обычно обозначается как H(s), где s = jω; s и Η — комплексные величины. Фазочастотная характеристика важна, поскольку сигнал, целиком расположенный по частоте в полосе пропускания, будет искажен, если время запаздывания при прохождении через фильтр не будет постоянным для различных частот.
Постоянство временной задержки (для всех частот) соответствует линейному возрастанию фазового сдвига в зависимости от частоты, поэтому термин фильтр с линейной фазочастотной характеристикой применяется к идеальному в этом отношении фильтру. На рис. 5.8 показаны типовые графики фазочастотной характеристики и амплитудно-частотной характеристики фильтра нижних частот, который явно не является линейно-фазовым фильтром. Графики фазочастотной характеристики лучше всего строить в линейном по частоте масштабе.
- Предыдущая
- 104/146
- Следующая