Искусство схемотехники. Том 2 (Изд.4-е) - Хоровиц Пауль - Страница 62
- Предыдущая
- 62/124
- Следующая
Рис. 9.2. Зависимость скорости от мощности для различных логических семейств.
Между тем серия 4000 КМОП эволюционировала в улучшенную серию 4000 В с более широким диапазоном напряжения питания (от 3 до 18 В), лучшей защитой входов и более высокой скоростью (3,5 МГц при 5 В). По существу, это та же серия 74S с функциями и выводами семейства 74, которая воспользовалась потрясающим успехом биполярной логики семейства 74. ЭСЛ пустила ростки в виде ECLII, ECLIII, ECL 10,000 и ECL 100,000, обладающие скоростью до 500 МГц.
Итак, ситуация в 1980 г. была следующей. Большинство схем было выполнено на серии 74LS в сочетании с 74F (или 74AS), если требовалась более высокая скорость. Та же самая ТТЛ использовалась как своего рода клей для связи микропроцессорных n-МОП-схем, чьи входы и выходы были совместимы с ТТЛ. Микромощные устройства всегда были сделаны с использованием КМОП-серий 4000 В или 74С, эквивалентными и совместимыми друг с другом. Для устройств с самой высокой скоростью (100÷500 МГц) использовалась ЭСЛ. Совместное использование семейств было не столь уж частым явлением, исключение составляли редкие сочетания КМОП и ТТЛ или сопряжение ТТЛ с быстродействующими ЭСЛ-схемами.
В 1980-е гг. произошло замечательное событие - разработка КМОП-логики со скоростью и выходными параметрами, соответствующими ТТЛ. Сначала появились элементы серии 74НС («высокоскоростная КМОП-логика») с такой же скоростью как 74LS и, разумеется, с нулевым током покоя и затем серия 74АС («улучшенная КМОП-логика») с такой же скоростью как 74F или 74AS. Обладая размахом выходного сигнала, равным напряжению питания, и входным порогом, равным половине напряжения источника питания, эта логика сочетает лучшие свойства предшествующих ТТЛ- и КМОП-логики и постепенно должна вытеснить биполярную ТТЛ. Вместе с тем имеется некоторая несовместимость — логический «высокий» уровень выходного сигнала ТТЛ- и n-МОП-логики (мин. 2,4 В) не достаточен для запуска входа НС и АС. Поскольку, по-видимому, существует Такой период времени, когда вам необходимо использовать некоторые из старых семейств биполярной ТТЛ- или n-МОП-логики, каждое семейство КМОП-логики имеет вариант с более низким входным порогом. Такие семейства имеют наименование 74НСТ и 74АСТ («быстродействующая КМОП-логика с ТТЛ-порогом»). Однако не пытайтесь использовать их везде, где только можно, ведь элементы с КМОП-порогом обладают более высокой помехоустойчивостью и представляют собой семейства по выбору проектировщика. К тому же в 80-е гг. БИС и СБИС постепенно переключались с n-МОП-технологии на КМОП (с вытекающими отсюда низкой мощностью и КМОП-совместимостью), одновременно увеличивая скорость и сложность. И наконец, на вершине быстродействия — элементы на GaAs (арсенида галлия), обеспечивающие скорость в несколько гигагерц.
Заметьте, что все КМОП-семейства (4000 В, 74 С, НС, НСТ, АС и ACT) обладают довольно привлекательным свойством — нулевой «статической» (т. е. когда ничего не происходит) мощностью рассеивания с типовым током покоя менее микроампера. Но при переключениях логических уровней КМОП-элементы потребляют «динамический» ток, обусловленный двумя эффектами: а) переходной проводимостью между шинами питания внутренних двухтактных пар в середине логического перепада и б) динамическим током, необходимым для заряда и разряда внутренних емкостей и емкости нагрузки. Динамический ток пропорционален частоте переключения и может соперничать с током биполярной логики при достижении максимальной частоты работы. Для более детального анализа загляните в разд. 8.10 (рис. 8.18) и разд. 14.16 (рис. 14.38).
Завершим нашу краткую историческую справку следующей рекомендацией. Используйте во всех ваших новых устройствах логику 74НС в сочетании с (а) 74НСТ для обеспечения совместимости с существующими устройствами на n-МОП- и ТТЛ и (б) 74АС(Т) для обеспечения скорости. Можно использовать биполярную ТТЛ (74LS/ALS и 74F/S), но предпочтительнее, по-видимому, КМОП-логика. Если требуется широкий диапазон напряжения питания, а к быстродействию особых требований не предъявляется (например, портативные устройства с питанием от нерегулируемой батареи 9 В), то используйте старую серию 4000 В/74С.
9.02. Входные и выходные характеристики
Семейства цифровой логики проектируются таким образом, чтобы выход кристалла был способен работать на большое число входов элементов того же семейства. Типовой коэффициент разветвления по выходу равен 10; это означает, что к выходу вентиля или триггера можно подключить до 10 входов и элемент будет правильно работать. Другими словами, в обычной практике проектирования цифровых схем можно обойтись без каких-либо сведений об электрических параметрах используемого вами кристалла при условии, что ваша схема состоит только из элементов цифровой логики, работающих также на элементы цифровой логики того же типа. Практически это означает, что вы можете особенно не думать о реальных процессах, происходящих на логических входах и выходах. Однако если вы пытаетесь подключить цифровую схему к внешним источникам сигналов (цифровых или аналоговых) или используете цифровые схемы для запуска других приборов, вы должны иметь представление о том, что необходимо для управления логическим входом и чем может управлять логический выход. Более того, при смешивании семейств логических элементов важно знать схемные особенности логических входов и выходов. Сопряжение логических семейств представляет отнюдь не чисто теоретический интерес. Для того чтобы воспользоваться преимуществами современных кристаллов БИС или специальными функциями, которыми обладает только одно семейство логических элементов, вы должны знать, как сочетать логические элементы различных типов. В последующих разделах мы рассмотрим детально схемные особенности логических входов и выходов и приведем примеры сопряжения логических семейств между собой и логических элементов с внешним миром.
Входные характеристики. Графики, приведенные на рис. 9.3, демонстрируют основные свойства КМОП- и ТТЛ-входов — входной ток и выходное напряжение (для инвертора) как функции входного напряжения. На графиках мы несколько расширили диапазон входных напряжений по сравнению с принятым в цифровых схемах, поскольку при сопряжении легко могут возникнуть ситуации, когда входные сигналы будут превышать напряжение источника питания. Как следует из графиков, и КМОП-логика и ТТЛ нормально работают при подключении вывода питания отрицательной полярности к земле.
Рис. 9.3. Характеристики логических вентилей, а — входной ток; б — передаточная характеристика.
При подаче на ТТЛ-вход низкого уровня он работает как источник тока заметной величины, а при подаче высокого уровня — как нагрузка, потребляющая небольшой ток (типовой — несколько мкА; никогда не превышает 20 мкА). Для управления ТТЛ-входом вы должны обеспечить отвод тока порядка 1 мА (точные значения приведены в табл. 9.1), поддерживая напряжение на входе на уровне менее 0,4 В. Несоблюдение этого условия может привести к неправильной работе схемы при сопряжении! Для входных напряжений ниже уровня земли ТТЛ-вход ведет себя как фиксирующий диод, включенный на землю; при напряжениях выше +5 В ток определяется напряжением пробоя диода (LS, F) или перехода база-эмиттер (ALS, AS) с напряжением пробоя около 10 В.
Типичное значение входного порога ТТЛ составляет примерно +1,3 В, хотя по техническим условиям он может находиться между +0,8 и +2,0 В. ТТЛ-вентили с триггерами Шмитта на входе (`13, `14, `132) имеют гистерезис +0,4 В; при графическом изображении они помечаются символом гистерезиса (см. например, рис. 9.9). Напряжение питания Uпит (обычно его обозначают UKK) составляет +5,0 В +5 %.
- Предыдущая
- 62/124
- Следующая