Выбери любимый жанр

Энергия и жизнь - Печуркин Николай Савельевич - Страница 12


Изменить размер шрифта:

12

Сам поток энергии, захваченной системой, складывается из двух частей: доли, связанной с запасением энергии в биомассе — В, и потерь на организацию, поддержание и активность, т. е. расход энергии системой, — R:

Нисп = µ В — R[2]. (2)

где µ показатель прироста биомассы (или обновления в стационарном состоянии открытой системы).

Объединив (1) и (2), получим общее соотношение для потоков энергии в систему и ее трансформации в этой системе:

Нпад Ннеисп = Нисп = µ В + R (3)

Дадим формулировку энергетического принципа: в процессах развития надорганизменных систем (эволюции, экологических сукцессиях и перестройках) использованный биологической системой поток энергии Нисп возрастает, достигая локальных максимальных значений в стационарных состояниях.

Подчеркнем еще раз, что в формулировке данного принципа речь идет о стационарных состояниях, которые достигаются в процессе развития открытых биологических систем популяционного и более высоких уровней структурной организации, а также их эволюции.

Представим схематически наиболее предпочтительный тип изменения потоков энергии во времени, использованных системой (рис. 10,а). Здесь показаны и рост Нпад, т. е. рост захваченной энергии, и уменьшение Ннеисп, т. е. снижение потерь. Штриховкой обозначено, что при этом происходит увеличение рассеяния энергии внутри системы Д с уменьшением трат на образование биомассы (это относится уже ко второму энергетическому принципу и будет обсуждаться позже). Естественно, что монотонное линейное увеличение Нпад или снижение Ннеисп не может иметь места в реальных системах. Гораздо типичнее скачкообразные переходы, связанные с качественными изменения в самой системе (рис. 10, б—г). Условия роста (или по крайней мере не убывания) потока использованной энергии Нисп остаются для каждого момента времени.

Энергия и жизнь - i_012.jpg

Рис. 10. Возможные изменения потоков энергии при развитии открытых биологических систем надорганизменного уровня. Везде отмечается рост Нисп. (Объяснение в тексте)

6.3. Экспериментальные эволюционные машины (ЭЭМ)

В предыдущем параграфе мы упоминали о том, что непрерывный рост микробных популяций в проточных системах позволяет экспериментально изучать микроэволюционные переходы, т.е. шаги эволюции.

Суть непрерывного процесса заключается в постоянной подаче питания в зону развития популяции и одновременном отборе избыточной части из рабочего пространства. Природная популяция, таким образом, осуществляя непрерывный обмен веществом с внешней средой и получая энергию извне, развивается в открытой системе, что является главной чертой ее динамики. В лабораторных условиях такой обмен осуществляется с помощью непрерывного потока питающей среды в рабочий объем ферментера и соответствующего оттока культуральной жидкости.

В классических периодических процессах нелимитированный рост популяции отмечается лишь во время экспоненциальной фазы, которая сменяется фазой замедления, т. е. торможения роста. При непрерывном культивировании можно застабилизировать рост популяции в любой точке на восходящей ветви S-образного роста популяции, в том числе и в экспоненциальной фазе. Для этого, как уже говорилось, необходимо непрерывно подавать свежую питательную среду для популяции и удалять избыточную часть популяции из рабочего объема. Для поддержания плотности популяции в заданной точке фазы нелимитированного роста применяются различные способы управления скоростью протока. Основное их свойство — наличие обратной связи между приростом концентрации биомассы и удалением части популяции из ферментера. Эти величины должны быть равными и это равенство, а с ним и концентрация биомассы — поддерживаются с помощью автоматических измеряющих и следящих устройств. Среди таких способов первым был турбидостат, в котором концентрация клеток поддерживается на определенном уровне за счет регулирования оптической плотности культуры. Применение его ограничено работой с оптически однородными средами.

Для процессов культивирования, в которых имеется прямая связь между приростом биомассы и изменением рН-культуры (например, при потреблении физиологически кислого источника азота), разработан и используется рН-статный способ управления скоростью протока. При этом скорость протока с помощью автоматических устройств уравнивается со скоростью изменения рН растущей популяцией, а следовательно, и со скоростью роста, что обеспечивает поддержание концентрации биомассы на заданном уровне.

Энергия и жизнь - i_013.jpg

Рис. 11. Блок-схема процессов непрерывного роста микробных популяций.

1 — культиватор; 2 — датчик-измеритель; 3 — самописец с регулятором; 4 — система управления насосами-дозаторами; 5 — система дозирования; 6 — сосуд с питательной средой; 7 — сборник урожая [Печуркин, 1982]. (Штриховой линией отмечена блок-схема хемостата.)

Наиболее просто и надежно система поддержания концентрации биомассы (клеток) и управления скоростью протока работает в импульсном режиме (рис. 11). Основу схемы составляет датчик-измеритель. Для турбидостата это — датчик оптической плотности, для рН-стата — электродная пара рН. Измеренное значение параметра в виде электрического сигнала подается на схему управления протоком (блоки 3 и 4). Если величина параметра достигает заданной, то в системе управления вырабатывается управляющий сигнал, который передается в систему дозирования. Происходит долив порции свежей питательной среды и одновременно такой же по объему слив части суспензии из ферментера. Разбавление культуры свежей питательной средой приводит к снижению величины управляющего параметра, и проток выключается. Продолжающийся рост популяции снова вызывает возрастание величины управляющего параметра до уровня срабатывания следящей системы и т. д. На самописце 3 вырисовывается «пила», частота и размер зубцов которой определяются особенностями схемы управления и скоростью роста популяции.

В отличие от описанного выше турбидостатного культивирования в нелимитированных условиях, когда для поддержания устойчивого состояния требуются регуляторы, хемостат характеризуется обязательным внешним ограничением роста. Такое ограничение является устойчивым регулятором стационарности параметров среды и популяции. Как правило, это — лимитирование недостатком одного из компонентов питания или ингибирование роста продуктами метаболизма. Основа хемостата — подача питательной среды с постоянной скоростью протока. Популяция, утилизируя субстрат, «загоняет» себя в условия лимитирования по одному из компонентов среды, потребляя его до низких остаточных значений. Хемостат получил широкое распространение, так как простота аппаратурного оформления сочетается в нем с широкими экспериментальными возможностями.

Для нас здесь необходимо подчеркнуть два важных свойства турбидо- и хемостата. Первый соответствует росту популяций в нелимитированных условиях, что в природе может встречаться на ранних фазах экологической сукцессии, например при заселении новой экологической ниши. Второй — с глубоким лимитированием роста — является аналогом большинства природных ситуаций, где повсеместно встречается ограничение роста.

С точки зрения функционирования открытых систем хемостат и турбидостат — это термодинамические системы, способные находиться в устойчивых стационарных состояниях. Причем хемостат соответствует случаю постоянных потоков, а турбидостат — случаю постоянной организации (или постоянных реакционных сил). Других условий стационарности в открытых системах просто не бывает. Таким образом, в руках экспериментаторов имеются открытые системы двух основных типов развития (и для экологии, и для термодинамики). Если в таких системах будут происходить эволюционные изменения, переход от одного стационарного состояния к другому в результате изменения качественных свойств систем (например, в результате процессов мутирования и отбора), то главные характеристики этих сукцессионных перестроек, или шагов эволюции, можно измерить, не теряя общности подхода с точки зрения как биологии, так и физики. Естественно, что основу такого единства составляет энергетический подход.

12
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело