Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - Вайнберг Стивен - Страница 79
- Предыдущая
- 79/82
- Следующая
Б164
Направление этого магнитного поля определяется любым случайным магнитным полем, например полем Земли. Важно, что напряженность возникающего в железе магнитного поля одинакова, вне зависимости от того, каким бы слабым ни было случайное внешнее поле. Если нет сильного внешнего магнитного поля, направление намагниченности внутри железа разное в разных «доменах», и те магнитные поля, которые спонтанно возникают внутри отдельных доменов, взаимно уничтожаются во всем куске магнита. Домены можно выстроить в одном направлении, поместив охлажденный кусок железа в сильное внешнее магнитное поле. Даже если затем выключить внешнее поле, намагниченность сохраняется.
Б165
Эта симметрия нарушена не полностью. Остающаяся ненарушенная симметрия (известная как электромагнитная калибровочная инвариантность) обеспечивает равенство нулю массы фотона. Но и эта остаточная симметрия нарушается в сверхпроводнике. Действительно, что такое сверхпроводник? По существу, это не что иное, как кусок вещества, в котором нарушена электромагнитная калибровочная инвариантность.
Б166
Это было сделано К. Коуэном и Ф. Райнесом.
Б167
В том числе Ф. Энглерт и Р. Браут, а также Г. Гуральник, К. Хаген и Т. Киббл.
Б168
За счет этого нового взаимодействия произведения полей любых частиц могут приобрести вакуумные средние значения, нарушающие электрослабую симметрию, хотя вакуумные средние значения отдельных полей остаются при этом равными нулю. (Знакомым свойством вероятностей является то, что произведение величин может иметь ненулевое среднее значение, даже если средние значения отдельных величин равны нулю. Например, средняя высота океанских волн над уровнем моря, по определению, равна нулю, но среднее значение квадрата высоты океанских волн, т.е. произведения высоты на саму себя, не равно нулю.) Это новое взаимодействие может оставаться необнаруженным, если оно действует только на пока что не найденные гипотетические очень тяжелые частицы.
Б169
Эти теории были независимо разработаны Ленни Сасскиндом из Стэнфорда и мной. Чтобы отличить предложенный в них новый тип сверхсильных взаимодействий от знакомых сильных «цветовых» взаимодействий, связывающих кварки внутри протонов, эти взаимодействия по предложению Сасскинда назвали техницветом. Трудности с идеей техницвета связаны с тем, что в ней не учитываются массы кварков, электронов и т.п. Путем разных ухищрений можно придать этим частицам массы и не вступить в противоречие с экспериментом, но тогда сама теория становится настолько вычурной и искусственной, что к ней трудно относиться серьезно.
Б170
Теории, объединяющие сильные и электрослабые взаимодействия, часто называют теориями великого объединения. Конкретные варианты таких теорий предлагались Джогешем Пати и Абдусом Саламом, Говардом Джорджи и Шелдоном Глэшоу, и многими другими.
Б171
Речь идет о работе, написанной Говардом Джорджи, Элен Квинн и мной.
Б172
Точнее, предсказывается ровно одно отношение этих констант. Когда в 1974 г. предсказание было сделано, оно поначалу казалось ошибочным: теория предсказывала значение 0,22, а из опытов по рассеянию нейтрино следовало, что значение отношения равно 0,35. С течением времени экспериментальное значение этой величины уменьшалось, и сейчас оно очень близко к предсказываемой величине 0,22. Однако измерения и теоретические расчеты достигли сейчас такой точности, что мы можем различать расхождение между ними на уровне нескольких процентов. Мы увидим далее, что существуют теории (подчиняющиеся новому типу симметрии, известной как суперсимметрия), которые естественным образом объясняют это остающееся расхождение.
Б173
Суперсимметрия была предложена как захватывающая возможность Юлиусом Вессом и Бруно Зумино в 1974 г., но с тех пор интерес к суперсимметрии проявлялся только в связи с решением проблемы иерархии. (Другие варианты суперсимметрии были предложены в более ранних работах Ю.А. Гольфанда и Е.П. Лихтмана, а также Д.В. Волкова и В.П. Акулова, но в этих работах не раскрывалось физическое значение суперсимметрии, так что они не привлекли внимания. По крайней мере частично, Весс и Зумино были вдохновлены работами 1971 г. по теории струн П. Рамона, А. Неве и Дж. Шварца и Ж.-Л. Жервэ и Б. Сакиты.)
Б174
До возникновения суперсимметрии считалось, что никакая симметрия не может запретить такие массы. Отсутствие масс у таких частиц, как кварки и электроны, фотон, W– и Z-частицы и глюоны, в уравнениях первоначальной версии стандартной модели неразрывно связано с тем, что у этих частиц есть спин. (Знакомое явление поляризации света есть прямое следствие наличия спина фотона.) Однако для того, чтобы поле имело ненулевое вакуумное среднее, нарушающее электрослабую симметрию, это поле должно быть бесспиновым. В противном случае, вакуумное среднее будет нарушать также симметрию вакуума по отношению к изменению направлений, что грубо противоречит наблюдениям. Суперсимметрия решает проблему, устанавливая связь между бесспиновым полем, вакуумное среднее которого нарушает электрослабую симметрию, и различными полями со спином, которым электрослабая симметрия запрещает иметь массы, входящие в полевые уравнения. У суперсимметричных теорий много своих проблем: суперпартнеры известных частиц не обнаружены, следовательно, они должны быть намного тяжелее, и поэтому сама суперсимметрия должна нарушаться. Существует ряд интересных предложений о механизме нарушения суперсимметрии, причем некоторые из них включают гравитационное взаимодействие, однако, вопрос все еще открыт.
Б175
В той версии стандартной модели, которая основана на введении нового сверхсильного взаимодействия (техницвета), можно обойти проблему иерархий, поскольку массы вообще не входят в уравнения, описывающие физику при энергиях много меньше планковской. Вместо этого шкала масс частиц W и Z, а также других элементарных частиц стандартной модели, определяется тем, как изменяются с энергией константы техницветового взаимодействия. Считается, что техницветовое взаимодействие, а также сильное и электрослабое взаимодействия, имеют общую константу при энергии, близкой к энергии Планка. С уменьшением энергии константа будет расти очень медленно, так что цветовое взаимодействие будет недостаточно сильным, чтобы нарушить любую симметрию, пока энергия не уменьшится до величины, намного меньше планковской энергии. Вполне вероятно, что без всякой тонкой настройки параметров теории, техницветовое взаимодействие будет расти с уменьшением энергии чуть быстрее, чем обычное цветовое взаимодействие, так что оно породит массы W– и Z-частиц, близкие к наблюдаемым, в то время как обычное цветовое взаимодействие, действуя в одиночку, породит в тысячу раз меньшие массы этих частиц.
- Предыдущая
- 79/82
- Следующая