Выбери любимый жанр

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - Вайнберг Стивен - Страница 55


Изменить размер шрифта:

55

Все это происходило в 1917 г. Из-за войны Эйнштейн не знал, что американский астроном Весто Слайфер уже обнаружил свидетельства того, что галактики (как мы их сейчас называем) разлетаются в разные стороны, так что Вселенная на самом деле не статична, а расширяется. После войны Эдвин Хаббл, пользуясь новым 100-дюймовым телескопом на горе Маунт-Вильсон, подтвердил это расширение и измерил его скорость. Эйнштейн глубоко сожалел[201], что испортил свои уравнения введением космологической постоянной. Однако возможность существования такой постоянной так просто не исчезла.

С одной стороны, нет оснований не включать космологическую постоянную в уравнения Эйнштейна. Теория Эйнштейна была основана на принципе симметрии, утверждавшем, что законы природы не должны зависеть от той системы отсчета в пространстве и во времени, которую мы используем для изучения этих законов. Но первоначальная теория Эйнштейна не была самой общей теорией, удовлетворяющей такому принципу симметрии. Существует громадное количество возможных разрешенных слагаемых, которые можно добавить в уравнения поля тяготения, причем влияние этих слагаемых на астрономических расстояниях будет пренебрежимо мало.

Но кроме этих слагаемых есть одно-единственное слагаемое, которое можно добавить в уравнения поля общей теории относительности без нарушения фундаментальных принципов симметрии этой теории и которое будет важно в космологических масштабах, – это слагаемое, включающее космологическую постоянную. В 1915 г. Эйнштейн опирался на предположение, что уравнения поля тяготения должны быть простейшими из возможных. Опыт последних трех четвертей ХХ в. научил нас не доверять такому предположению. Мы обнаружили, что всякое усложнение наших теорий, не запрещенное какой-то симметрией или другим фундаментальным принципом, происходит на самом деле. Поэтому недостаточно сказать, что космологическая постоянная это ненужное усложнение. Простота, как и все остальное, требует объяснения.

В квантовой механике проблема еще сложнее. Разные поля, заполняющие нашу Вселенную, испытывают непрерывные квантовые флуктуации, в результате которых пустое пространство обретает энергию. Эта энергия наблюдаема только благодаря оказываемому гравитационному действию. Дело в том, что энергия любого сорта порождает гравитационное поле и, в свою очередь, испытывает воздействие других гравитационных полей, так что энергия, заполняющая пространство, может оказывать существенное влияние на расширение Вселенной. Мы не можем вычислить энергию в единице объема, порождаемую такими квантовыми флуктуациями, – если пользоваться при расчете простейшими приближениями, энергия оказывается бесконечной. Но если сделать несколько разумных предположений о том, как отбросить высокочастотные флуктуации, ответственные за эту бесконечность, то вакуумная энергия в единице объема оказывается все равно чудовищно большой, в 10120раз большей, чем это допускается наблюдаемой скоростью расширения Вселенной. Пожалуй, это самый худший провал оценки по порядку величины во всей истории науки.

Если энергия пустого пространства положительна, то она порождает гравитационное отталкивание между частицами материи на очень больших расстояниях, в точности как то слагаемое с космологической постоянной, которое Эйнштейн добавил к своим уравнениям в 1917 г. Поэтому мы можем рассматривать энергию, возникающую вследствие квантовых флуктуаций, как дающую вклад в «полную» космологическую константу. Расширение Вселенной определяется только этой полной космологической константой, а не отдельно той космологической константой, которая входит в полевые уравнения общей теории относительности, или константой, связанной с квантовой энергией вакуума. Возникает возможность, что проблема космологической постоянной может как бы скомпенсировать проблему энергии пустого пространства. Иными словами, возможно, что отрицательная космологическая постоянная в эйнштейновских полевых уравнениях в точности сокращает действие чудовищной вакуумной энергии, возникающей за счет вакуумных флуктуаций. Но чтобы не войти в противоречие с тем, что мы знаем о расширении Вселенной, полная космологическая постоянная должна быть столь мала, что два слагаемых, из которых она состоит, обязаны сократиться вплоть до 120 первых значащих цифр. Это не пустяк, который можно оставить без объяснений.

В течение многих лет физики-теоретики пытаются понять механизм сокращения полной космологической постоянной[202], пока что без особого успеха. Если принять теорию струн, то ситуация становится еще хуже. Разные теории струн приводят к разным значениям полной космологической постоянной (включающей эффекты вакуума гравитационного поля), но все они оказываются чудовищно большими[203]. При такой большой полной космологической постоянной пространство было бы так скручено, что ни в малейшей степени не было бы похоже на обычное трехмерное пространство с евклидовой геометрией, в котором мы живем.

Если все иные способы объяснения не годятся, нам ничего не остается, как вернуться назад, к антропному принципу. Может существовать много разных «вселенных», каждая со своим значением космологической постоянной. Если это так, то единственная Вселенная, в которой, как можно думать, мы находимся, это та, где полная космологическая постоянная достаточно мала, чтобы жизнь могла возникнуть и развиться. Более точно, если бы полная космологическая постоянная была большой и отрицательной, то Вселенная прошла бы свой цикл расширения и последующего сжатия слишком быстро, и жизнь не успела бы развиться. Наоборот, если бы полная космологическая постоянная была большой и положительной, Вселенная продолжала бы вечное расширение, но силы отталкивания, порождаемые космологической постоянной, предотвратили бы гравитационное сжатие с образованием тех комков, из которых потом в ранней Вселенной возникли галактики и звезды, а следовательно, жизни опять не нашлось бы места. Возможно, что правильная теория струн – это теория (не знаем, единственная или нет), которая приводит к значению полной космологической постоянной, лежащему только в том сравнительно узком интервале небольших значений, которые допускают существование жизни.

Одним из интересных следствий такой линии рассуждений является вывод, что нет никаких причин, почему полная космологическая постоянная (включающая эффекты квантовых флуктуаций вакуума) должна строго равняться нулю. Антропный принцип требует всего лишь, чтобы она была достаточно мала и позволяла галактикам образоваться и выжить в течение миллиардов лет. На самом деле, астрономические наблюдения уже давно указывают на то, что полная космологическая постоянная не равна нулю, а имеет небольшое положительное значение.

Одно из таких свидетельств связано со знаменитой проблемой космологической «скрытой массы». Наиболее естественным значением плотности массы Вселенной (которое кстати, требуется и в популярных сейчас космологических теориях) является такое значение, которое только-только позволяет Вселенной расширяться вечно[204]. Но эта плотность в пять-десять раз больше той, которая определяется массой скоплений галактик (это вытекает из изучения движения галактик в таких скоплениях). Скрытая масса могла бы соответствовать какому-то типу темной материи, но есть и другая возможность. Как уже отмечалось, наличие положительной космологической постоянной эквивалентно постоянной положительной однородной плотности энергии, которая, согласно знаменитому соотношению Эйнштейна между энергией и массой, эквивалентна постоянной однородной плотности массы. Таким образом, не исключено, что недостающие 80–90 % космической плотности «массы» обеспечиваются совсем не реальным веществом того или иного сорта, а положительной космологической постоянной.

55
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело