Ваш радиоприемник - Сворень Рудольф Анатольевич - Страница 10
- Предыдущая
- 10/51
- Следующая
Частотные искажения особенно заметны, когда происходит ослабление или усиление гармоник на краях звукового диапазона — в области высших и низших звуковых частот. Для различных элементов звуковоспроизводящего тракта, в том числе для микрофона и громкоговорителя, принято рисовать частотную характеристику, которая показывает, в какой степени этот элемент создает или, наоборот, компенсирует частотные искажения. Частотная характеристика — это график, у которого по горизонтальной оси всегда откладывается частота. Величина, которая откладывается по вертикальной оси, зависит от того, для какого устройства или прибора составляется характеристика. Так, для громкоговорителя по вертикальной оси можно откладывать силу звука при условии, что к звуковой катушке всегда подводится одинаковая электрическая мощность. Не забудьте, что когда мы в данном случае говорим о частоте переменного тока, то имеем в виду чисто синусоидальный переменный ток. Если бы мы захотели определить частотную характеристику для токов какой-нибудь другой формы, то очень быстро запутались бы, так как должны были бы учитывать и зависимость силы звука от изменения частоты и от искажения формы сигнала. Что же касается синусоидального тока, то никакие частотные искажения не меняют его формы. В этом одна из наиболее существенных особенностей синусоиды.
Для идеального громкоговорителя частотная характеристика — прямая горизонтальная линия, показывающая, что этот громкоговоритель одинаково хорошо воспроизводит все частоты. В действительности такого, конечно, не бывает. Как правило, частотная характеристика громкоговорителя «завалена», то есть загнута книзу в области высших и низших частот. Практически это значит, что громкоговоритель непропорционально слабо воспроизводит высшие и низшие частоты, причем для разных громкоговорителей отклонение от идеала (все частоты воспроизводятся одинаково) может быть самым различным. Этим, кстати говоря, в основном и определяется качество громкоговорителя, а значит и качество самого приемника. Ведь конечная цель в любом радиоприемнике — создание неискаженного, то есть похожего на настоящий, звука.
Конечно, решение этой задачи зависит не только от громкоговорителя, но oil является конечным звеном, своего рода сборочным цехом фабрики «синтетического звука», и поэтому от громкоговорителя зависит очень многое. Во всяком случае он может испортить все «старания» других узлов приемника. Если частотная характеристика завалена в области высших частот, то звук становится глухим, бубнящим, при воспроизведении музыки плохо слышны такие инструменты, как скрипки, флейты, одним словом, нет чистоты, прозрачности звука. Завал в области низших частот, наоборот, приводит к тому, что плохо слышны и даже совсем пропадают басы, звук становится сухим, с металлическими оттенками, такие инструменты, как барабан и контрабас слышны очень слабо. Как правило, громкоговорители с большим диаметром диффузора хорошо воспроизводят низшие звуковые частоты, а маленькие громкоговорители — высшие частоты. В современных приемниках иногда устанавливают несколько разных громкоговорителей и таким путем стремятся приблизиться к идеальной частотной характеристике.
Подводя итог всему, что было рассказано в этой главе, мы еще раз отметим, что в основе всех линий электрической связи, в том числе и радиосвязи, лежит преобразование звука в электрический сигнал, передача этого сигнала на большое расстояние и, наконец, обратное преобразование электрического сигнала в звук. Вы узнали, конечно в самых общих чертах, как это все происходит в линиях проводной связи. Сейчас мы должны выяснить, как подобные преобразования выглядят в линиях радиосвязи, где передача сигналов осуществляется без проводов.
«Гребенка и компас»
Эти слова взяты в кавычки потому, что весь заголовок позаимствован из другой книги. Книга называется «Что такое радиолокация», а написал ее военный радиоинженер С. А. Бажанов, умевший просто и понятно рассказывать о сложных вещах и прекрасно владевший секретом подбора образов и сравнений. «Гребенка и компас» — это относится к главе, в которой рассказано об электромагнитных полях и волнах. Надо признаться, что сколько ни думай, а лучшего начала для рассказа об этом явлении, по-видимому, не придумаешь. Гребенка и компас — те наглядные пособия, которые позволяют без грубых упрощений подойти к одной из самых сложных тем в радиотехнике — к передаче сообщений с помощью радиоволн.
Вы натерли гребенку шерстяной тряпкой или просто причесали волосы, и она приобрела особое свойство — электрический заряд. В этом легко убедиться, если поднести к наэлектризованной гребенке мелкие клочки бумаги или лоскутки шелка. Однако в результате электризации произошли изменения не только в самой гребенке. Ведь она тянет к себе клочки бумаги с довольно большого расстояния, и значит в этом взаимодействии каким-то образом участвует пространство, среда. Можно сказать, что вблизи наэлектризованного предмета и само пространство как-то изменяется, оно приобретает какие-то особые электрические свойства. Область пространства, где обнаруживаются эти свойства, а проще, где обнаруживается действие электрических сил, называют электрическим полем. Но это только одно из нескольких определений поля и, нужно признаться, весьма формальное.
С чем может быть связано появление вокруг наэлектризованной гребенки электрического поля? Может быть, произошли какие-нибудь изменения в окружающем воздухе — изменилась энергия его молекул, нарушились или, наоборот, укрепились связи между ними, или, может быть, наконец, произошла электризация самих атомов? Вое это, так же, как и другие изменения состояния вещества, не может объяснить появление поля. Если проделать опыт с гребенкой в безвоздушном пространстве, в абсолютном вакууме, то клочки бумаги будут по-прежнему притягиваться к ней. Нет! Вещество, любые его представители — атомы, молекулы, электроны — здесь ни при чем!
Тут наступил момент ввести еще одно более точное определение электрического поля. Оно представляет собой особый вид материи, существующий так же реально, как и вещество, но в отличие от последнего не доступный нашим органам чувств.
Когда неопровержимые опыты показывают, что наряду с веществом действительно существует такая форма материн, как поле, в частности электрическое поле, наш мозг не хочет находить места для этого необычного понятия. Даже люди, выполнившие множество экспериментов с полем, умеющие подсчитать его массу и запасы энергии, как правило, стараются уйти от вопроса: «А как вы себе представляете электрическое поле?» Чаще всего от них можно услышать примерно такой ответ: «А зачем обязательно как-то представлять себе поле? Нужно лишь быть уверенным, что поле не выдумка, что оно реально существует. Ну, а это видно из самых простых опытов». И для подкрепления своих слов наш ученый вырвет из блокнота листок бумаги, изорвет его в мелкие клочки и, наконец, как вы уже, наверно, догадались, извлечет из кармана гребенку. Слово будет предоставлено высшему авторитету — опыту.
Наряду с электрическим существует еще и магнитное поле, о котором мы уже упоминали. Оно возникает вблизи любого движущегося заряда, в том числе и вокруг проводника с током. Магнитное поле также можно обнаружить опытным путем— для этого достаточно поднести компас к проводнику, по которому течет сравнительно сильный (0,5–2 а) постоянный ток. Вблизи проводника с переменным током также существует магнитное поле, но обнаружить его с помощью компаса нельзя. Поскольку меняется ток, меняется и магнитное поле, стрелка компаса не может поспевать за этими изменениями и по инерции… стоит на месте.
Электрические и магнитные поля тесно связаны с зарядом. Уберите заряд, и электрическое поле исчезнет, остановите заряд — и магнитного поля нет. Однако можно получить электрические и магнитные поля «в чистом виде» — ни с чем не связанные и свободно перемещающиеся в пространстве на огромные расстояния.
- Предыдущая
- 10/51
- Следующая