Выбери любимый жанр

Шаг за шагом. От детекторного приемника до супергетеродина - Сворень Рудольф Анатольевич - Страница 53


Изменить размер шрифта:

53

Основное правило при выборе деталей Rф и Сф состоит в том, что емкостное сопротивление конденсатора Сф, для самой низкой из частот, должно быть во много раз меньше, чем сопротивление Rф. Вспомогательная таблица для выбора, элементов фильтра приведена на рисунках 116 и 81.

Шаг за шагом. От детекторного приемника до супергетеродина - _203.jpg

Рис. 116. В различных узлах радиоаппаратуры можно встретить развязывающий RC фильтр — простейшую цепь, разделяющую постоянный и переменный ток.

Во всех рассмотренных нами схемах усилителей ВЧ применена так называемая последовательная схема питания анодной цепи (лист 156), где постоянное напряжение на анод подается через контурную катушку. Наряду с этим существует и параллельная схема, где постоянное напряжение на детали контура не попадает.

Обе приведенные на чертеже 14 практические схемы усилителя ВЧ примерно одинаковы, и все же предпочтение можно было бы отдать первой схеме, так как контур здесь не шунтируется внутренним сопротивлением лампы и не нагружен таким значительным потребителем энергии, каким является детектор.

Однако, несмотря на это, в нашем приемнике мы соберем усилитель ВЧ с контуром в цепи анода (схема «б») Это позволит нам резко улучшить чувствительность и избирательность приемника за счет использования положительной обратной связи.

ОБРАТНАЯ СВЯЗЬ

Мы уже несколько раз упоминали об обратной связи в усилительном каскаде. Сейчас настал момент поговорить о ней более подробно.

Напряжение на сетке лампы управляет анодным током и тем самым влияет на анодное напряжение. Иными словами, цепь управляющей сетки связана с анодной цепью через электронный поток, и эта нормальная, прямая связь между сеткой и анодом лежит в основе усилительных свойств лампы. Но в усилительном каскаде может возникнуть и обратная связь, то есть обратное влияние анода на управляющую сетку.

Часто обратная связь возникает помимо нашего желания (например, через источники питания, через проходную емкость лампы или из-за близкого расположения анодных и сеточных цепей), и при этом она может сильно ухудшить работу приемника или усилителя.

Однако во многих случаях мы умышленно создаем в усилительном каскаде обратную связь и с ее помощью улучшаем работу каскада, например, снижаем искажения в усилителе НЧ или повышаем избирательность усилителя ВЧ.

В этом отношении обратная связь чем-то напоминает огонь, который при умелом обращении с ним может сделать много полезных дел. Но огонь может стать страшным злом, если потерять над ним контроль.

Влияние обратной связи на работу каскада прежде всего зависит от того, как взаимодействует напряжение, поступившее на сетку из анодной цепи (напряжение обратной связи Uoc), с усиливаемым сигналом Uвx, поступившим на сетку с предыдущего каскада.

Если оба эти напряжения действуют «согласованно», то есть если их положительные полупериоды, как и отрицательные, наступают одновременно, то обратная связь называется положительной. Если же напряжение обратной связи противодействует напряжению усиливаемого сигнала, то обратная связь называется отрицательной (см. рис. 117).

Шаг за шагом. От детекторного приемника до супергетеродина - _204.jpg

Рис. 117. Для улучшения работы усилителя часто специально вводят обратную связь — часть энергии из анодной цепи передают в сеточную. Обратная связь может быть положительной (переменное напряжение на сетке возрастает) или отрицательной (переменное напряжение на сетке уменьшается).

Поясним все это примерами. Предположим, что в усилителе без обратной связи на сетку подается переменное напряжение Uвх с амплитудой 10 в. Введем слабую отрицательную обратную, которая создает на сетке переменное напряжение Uoc с амплитудой 1 в. Поскольку обратная связь отрицательна, то напряжение на сетке Uc уменьшается до 9 в (10 в — 1 в = 9 в). Усилим обратную связь настолько, чтобы амплитуда напряжения Uoc равнялась бы 3 в. Это приведет к дальнейшему уменьшению результирующего напряжения до 7 в (10 в — 3 в = 7 в).

Теперь подадим на сетку напряжение положительной обратной связи U с такими же амплитудами. Поскольку при положительной обратной связи напряжения Uвх и Uoc складываются, то результирующее напряжение Uc будет составлять соответственно 11 в и 13 в (10 в + 1 в и 10 в + 3 в).

Попутно заметим, что при введении обратной связи всегда отбирается энергия из анодной цепи лампы и передается в ее сеточную цепь. Однако сам отбор этой энергии почти не влияет на процессы в анодной цепи, так как для создания обратной связи, как правило, нужна очень небольшая мощность — всего несколько процентов полезной выходной мощности каскада.

Существует много схем обратной связи. Некоторые из них упрощенно показаны на листах 157, 158.

Шаг за шагом. От детекторного приемника до супергетеродина - _205.jpg

В одной из приведенных схем (б) напряжение обратной связи создается на сопротивлении Rк при прохождении по-нему переменной составляющей анодного тока. Переменный анодный ток создает на сопротивлении Rк переменное падение напряжения, которое действует между катодом и шасси, то есть фактически подается на управляющую сетку (лист 137). Так и осуществляется влияние анодной цепи на сеточную, то есть обратная связь между этими цепями. Напомним, что когда сопротивление было зашунтировано конденсатором, то переменная составляющая анодного тока проходила помимо сопротивления Rк, переменного напряжения на нем не возникало, и поэтому обратная связь отсутствовала. Обратная связь в этом случае всегда получается отрицательной, и это легко пояснить примером. Предположим, что на сетке увеличивается положительное напряжение Uвx и это, как обычно, увеличивает анодный ток. При этом возрастает и напряжение Uк, которое анодный ток Iа создает на сопротивлении Rк (Uк = Ia·Rк — закон Ома!). Поскольку «плюс» напряжения Uк приложен к катоду, а «минус» к сетке, то с увеличением этого напряжения анодный ток будет уменьшаться (чем больше «минус» на сетке, тем меньше анодный ток!). Из всего этого следует, что с увеличением положительного напряжения Uвх,которое «стремится» увеличить анодный ток, возрастает и отрицательное напряжение обратной связи Uк, (Uoc), которое «стремится» уменьшить анодный ток. Иными словами, оба эти напряжения действуют «друг против друга», а значит, обратная связь отрицательна. Чем больше сопротивление Rк, тем больше и напряжение обратной связи, или, как говорят иначе, тем сильнее, глубже обратная связь.

В другой схеме (а) сопротивление утечки Rc и емкость Сос (это может быть междуэлектродная емкость или специально включенный конденсатор) образуют делитель напряжения, и часть переменного анодного напряжения действует на сопротивлении Rc, то есть между сеткой и катодом. Это и есть напряжение обратной связи. Оно будет тем больше, чем выше частота усиливаемого сигнала и чем больше емкость Сос, то есть чем меньше сопротивление верхнего участка делителя (хс). В данном случае обратная связь может быть как положительной, так и отрицательной — это зависит от многих факторов и в том числе от частоты усиливаемого сигнала.

53
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело