Выбери любимый жанр

Интерстеллар - Торн Кип - Страница 12


Изменить размер шрифта:

12

Пространственный вихрь

Черные дыры могут вращаться — так же, как вращается Земля. Вращающаяся дыра затягивает пространство вокруг себя в воронкообразное завихрение (рис. 5.4). Подобно воздуху в воронке смерча, ближе к центру черной дыры пространство завихряется быстрее, а по мере удаления от дыры — медленнее. Все, что падает к горизонту дыры, затягивается в пространственный вихрь и кружится там, словно подхваченная смерчем соломинка. Как-либо защититься от этого вихревого движения, находясь вблизи горизонта, невозможно31.

Интерстеллар - _46.jpg

Рис. 5.4. Пространство вблизи вращающейся черной дыры затягивается в вихревую воронку (Мой набросок от руки.)

Искривления пространства и времени у черной дыры в точных цифрах

Все три аспекта искривления пространства — времени (искривление пространства, замедление и искажение времени, пространственный вихрь) описываются математическими формулами. Эти формулы были выведены из теории относительности Эйнштейна. Результаты их прогнозов отображены на рис. 5.5 количественно — в отличие от рис. 5.1–5.4, изображающих искривления лишь качественно.

Интерстеллар - _47.jpg

Рис. 5.5. Численно точное изображение искривления пространства и времени вблизи быстровращающейся черной дыры. Скорость вращения составляет 99,8 процента от максимально возможной (Рисунок Дона Дэвиса по моему наброску.)

Искривленная форма поверхности на рис. 5.5 в точности такова, какой мы бы видели экваториальную плоскость дыры из балка. Изменяющиеся цвета отображают замедление времени, как если бы его замерял некто, зависнув на постоянной высоте над горизонтом. В области перехода от синего цвета к зеленому скорость течения времени составляет 20 процентов от его скорости вдалеке от дыры. В области перехода от желтого к красному время замедляется до 10 процентов от его «нормальной» скорости. А у самого подножия, в районе черной окружности, время замирает. Это горизонт событий; он выглядит как окружность, а не как сфера, поскольку мы рассматриваем лишь экваториальную плоскость и используем только два измерения нашей Вселенной (нашей браны). Если бы мы восстановили третье пространственное измерение, горизонт выглядел бы сплюснутой сферой — сфероидом. Скорости, с которой пространство закручивается вокруг черной дыры, показаны белыми стрелками: на горизонте событий пространственный вихрь вращается быстро, а по мере того, как мы будем подниматься на космическом корабле вверх, он будет замедляться.

На численно точном рис. 5.5 не показана внутренняя область дыры. Об этом мы поговорим позже, в главах 26 и 28.

Искривление, показанное на рис. 5.5, являет собой сущность черной дыры. Из его подробного математического описания физики могут получить любые сведения о дыре, за исключением природы сингулярности, находящейся в ее центре. Чтобы разобраться с сингулярностью, нужны малоизученные законы квантовой гравитации (см. главу 26).

Как выглядит черная дыра

Мы, люди, принадлежим нашей бране. Мы не можем покинуть ее и попасть в балк (разве что какая-нибудь сверхразвитая цивилизация переправит нас туда в тессеракте или ином устройстве, как это произошло с Купером, см. главу 29). Следовательно, нам не дано увидеть искривленное пространство черной дыры так, как оно изображено на рис. 5.5. Воронки и завихрения вокруг черных дыр, которые так часто показывают в кино, например в фантастическом фильме студии Диснея «Черная дыра» (1979), никогда не сможет увидеть ни один житель нашей Вселенной.

«Интерстеллар» — первый голливудский фильм, в котором черная дыра изображена правильно: так, как воспринимали бы ее люди на самом деле. Посмотрите, например, на рис. 5.6 (это не кадр из фильма). Черная дыра отбрасывает черную тень на звездное поле позади нее. Исходящие от звезд лучи света изогнуты искривленным пространством дыры — эффект гравитационного линзирования проявляется в виде концентрического узора. Лучи света, доходящие до нас с левого края тени, движутся в том же направлении, что и завихрения пространства дыры. Пространственный вихрь подталкивает их, позволяя проходить мимо дыры ближе к горизонту событий, чем лучам справа от тени, которые сопротивляются завихрению пространства. Поэтому слева тень сплющена, а справа у нее небольшой выступ. В главе 8 я расскажу подробнее, как выглядит вблизи черная дыра, если смотреть на нее из нашей Вселенной, из нашей браны.

Интерстеллар - _48.jpg

Интерстеллар - _49.jpg

Рис. 5.6. Быстровращающаяся черная дыра (вверху), которая движется на фоне звездного поля, изображенного внизу (Компьютерная модель студии Double Negative, специально для этой книги.)

Почему мы считаем это истиной

Теория относительности Эйнштейна проверена с большой точностью. Я не сомневаюсь в ее корректности, за исключением тех случаев, когда она вступает в противоречие с квантовой физикой. Для большой черной дыры, вроде Гаргантюа в «Интерстеллар», квантовая физика применима лишь вблизи ее центра, ее сингулярности, так что если черные дыры вообще существуют в нашей Вселенной, они должны обладать свойствами, продиктованными теорией относительности, свойствами, которые я описал выше.

Эти и другие свойства были выведены из уравнений Эйнштейна целой чередой физиков, причем достижения одних основывались на работах других (рис. 5.7). В первую очередь это Карл Шварцшильд, Рой Керр и Стивен Хокинг. В 1915 году, незадолго до гибели на русско-германском фронте Первой мировой войны, Шварцшильд рассчитал особенности искривления пространства вблизи невращающейся черной дыры; на сленге физиков эти выкладки зовутся метрикой Шварцшильда. В 1963 году Керр, новозеландский математик, сделал то же самое для вращающейся черной дыры, он вывел метрику Керра. А в начале семидесятых Стивен Хокинг и другие вывели набор законов, которым черные дыры должны подчиняться при поглощении звезд, при столкновениях и слияниях, а также при воздействии на черную дыру приливных сил других объектов.

Интерстеллар - _50.jpg

Рис. 5.7. Исследователи черных дыр. Слева направо: Карл Шварцшильд (1873–1916), Рой Керр (род. 1934), Стивен Хокинг (род. 1942), Роберт Оппенгеймер (1904–1967), Андреа Гез (род. 1965)

Черные дыры определенно существуют. Теория относительности утверждает, что, когда у массивной звезды заканчивается ядерное топливо, которое поддерживает ее жар, она коллапсирует. В 1939 году Роберт Оппенгеймер и его студент Хартланд Снайдер, пользуясь законами Эйнштейна, обнаружили, что если коллапс будет в точности сферическим, звезда образует вокруг себя черную дыру, затем создаст сингулярность в ее центре и, наконец, будет поглощена этой сингулярностью. Никакой материи не останется — вообще ничего. Образовавшаяся черная дыра будет состоять только из искривленного пространства и искривленного времени. За прошедшие с 1939 года десятилетия физики, используя теорию относительности, показали, что если коллапсирующая звезда деформирована и вращается, она также порождает черную дыру. Детали этого процесса были раскрыты при помощи компьютерного моделирования.

Астрономы нашли убедительные подтверждения того, что во Вселенной существует множество черных дыр. Замечательный пример — огромная черная дыра в центре нашей галактики, Млечного Пути. Андреа Гез из UCLA (Калифорнийский университет в Лос-Анджелесе) и небольшая группа астрономов под ее руководством наблюдали за движением звезд вокруг этой черной дыры: см. рис. 5.8. Точки на орбитах обозначают позиции звезд, зафиксированные с интервалом в год. Положение черной дыры я пометил белой звездочкой. Исходя из наблюдаемых перемещений звезд Гез вычислила силу гравитации черной дыры: она выше, чем сила гравитации Солнца на таком же расстоянии, в 4,1 миллиона раз. Следовательно, масса этой черной дыры составляет 4,1 миллиона солнечных масс!

12
Перейти на страницу:

Вы читаете книгу


Торн Кип - Интерстеллар Интерстеллар
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело