Выбери любимый жанр

В погоне за красотой - Смилга Вольдемар Петрович - Страница 27


Изменить размер шрифта:

27

Его упрекают, зло упрекают за отзыв на работы Абеля. Почему?

Он написал: «Работы Абеля выше моих похвал, потому что они выше моих работ».

Что же, в мире думают, что он, Карл Фридрих Гаусс, просто лжет? Что он не занимался никогда сходными проблемами и не получал сходных результатов? Или «они» хотят, чтобы он разыгрывал роль благородного отца семейства? Разве мало того, что несколько десятков важнейших теорем, которые он, Гаусс, доказал, но не печатал по тем или иным причинам, опубликованы другими и славу открытия приходится делить!

И Гаусс не читает работ, присылаемых ему на отзыв, и запрещает друзьям давать ему чужие мемуары.

Он хочет так служить своему божеству, чтобы никто (а в первую очередь он сам) не мог заподозрить, что в его проповедях есть чужие фразы.

Его любовь к математике неразделима с ревностью. Это любовь мужчины. Более того — любовь мусульманина. И он жестоко переживает, если одна из его многочисленных наложниц улыбнется кому-либо другому.

Но он знает: в его гарем проникают лишь достойные. Это утешает его отчасти. И он всегда готов первый признать достоинства соперников. Но радости… Радости он не испытывает.

Так и живет внешне размеренно, покойно и однообразно этот человек. А в мозгу его непрерывно возникают и гибнут удивительные вселенные, неизмеримо более прекрасные на его вкус, чем та, где он существует.

Можно повторить: Гаусс заслуживает преклонения, но полюбить его трудно. Впрочем, не будь Архимеда и Эйнштейна, можно было бы поверить, что гениальный математик не может быть иным.

Лет сто назад, кажется, Эмерсон сказал очень любопытные слова, ставшие теперь пословицей: «Пусть каждый возьмет то, что ему хочется, и заплатит за это полной ценой».

Цена Гаусса и Ньютона была весьма высока. Эйнштейн и, насколько мы можем судить, Архимед получили все, что имели эти двое, и ухитрились избежать платы.

Человеком того же склада, что они, был и Николай Иванович Лобачевский, и хотя при всем своем блестящем таланте он ученый другого класса, чем эта четверка, он несравненно ближе и приятней мне, чем Гаусс.

Но, повторяю, я поверил бы, что Гаусс высшее существо, человек будущего или потомок мудрых марсиан, если бы не было Эйнштейна.

Одна из возлюбленных Гаусса (как трудно отвязаться от полюбившегося сравнения!) — неевклидова геометрия.

Что же не удовлетворяло Гаусса, почему он не печатал своих работ?

Мы опять вступаем на весьма скользкую стезю психологическо-детективных изысканий, но отступать уже поздно. Прежде всего, как и положено детективам, посмотрим факты.

1. Гаусс писал в частных письмах, и, безусловно, писал правду, что основные идеи неевклидовой геометрии были ясны ему еще в конце XVIII столетия. Лобачевский в это время еще не поступил в гимназию, а Бояи вообще еще не родился.

2. Исключительное значение самой проблемы очевидно. Немыслимо, чтобы Гаусс ее недооценивал.

3. Известно, мы еще вспомним об этом, что Гаусс предпринимал попытки измерить сумму углов треугольника, образованного вершинами трех гор. Следовательно, он допускал возможность, что в природе осуществляется неевклидова геометрия.

4. В архиве Гаусса после его смерти нашли лишь довольно скудные наброски; никакого сколько-нибудь систематического рассмотрения неевклидовой геометрии не было.

5. Гаусс, прочитав работы Лобачевского и Бояи, в обоих случаях подчеркивал, что, по существу, ничего нового для себя не нашел.

Здесь, правда, некоторая сложность. Дело в том, что Лобачевский несравненно шире рассматривает возможные следствия неевклидовой геометрии, чем это сделал Бояи. В этом смысле их работы несравнимы.

Лобачевский, например, довел свои исследования до стадии, когда необходимо привлечение аппарата математического анализа. Одна из его работ специально посвящена применению «воображаемой геометрии к вычислению определенных интегралов».

Во фрагментах, оставшихся после Гаусса, нет и намеков, что он добрался до подобных вопросов. Тем не менее можно думать, что Гаусс был совершенно искренен в своих письмах. Если он и не развил неевклидову геометрию столь подробно, как Лобачевский, то, вне всяких сомнений, мог бы очень легко сделать это… если бы захотел.

В принципе все «выходы» неевклидовой геометрии в анализ он, конечно, предвидел. И вероятно, без особого труда он развил бы схему неевклидовой геометрии куда глубже и подробней, потому что по гению и математической культуре равных ему не было.

Последний тезис вне сомнений.

6. Гаусс, однако, так и не придал своим идеям сколько-нибудь законченную форму и не опубликовал свои работы. Только по письмам видно, что он владел довольно многим.

Попытаемся же понять — почему?

Объяснение самого Гаусса мы отбросим. Оно примерно так же убедительно, как заявление командира линейного корабля, что он не выполнил важнейшего боевого задания, испугавшись возможной недоброжелательной реакции нескольких рыбацких лодочек, которые могли оказаться за горизонтом.

Правда, я несколько увлекаюсь. Один призрак действительно мог мерещиться Гауссу. Обвинить его в безграмотности, в бездарности, как это выпало на долю Лобачевского, не посмел бы, конечно, никто. Но вот подозрение, что Гаусс, попросту говоря, помешался, такое подозрение могло кое у кого появиться. Ибо консервативность математиков (как и вообще ученых) недооценивать нельзя.

История с неевклидовой геометрией — лучший тому пример.

Еще в семидесятые годы XIX столетия, когда уже все было ясно, когда была доказана непротиворечивость неевклидовой геометрии, когда ее идеи получили блестящее развитие, когда эти идеи были поддержаны и укреплены авторитетом всех крупнейших математиков мира, еще в эти годы многие математики-профессионалы, математики с рангом академиков предлагали все новые и новые доказательства пятого постулата и даже не желали серьезно и объективно задуматься над геометрией Лобачевского.

Кстати, одним из самых последовательных и непримиримых врагов новых идей был тот самый Буняковский, что в 1853 году совершенно игнорировал работы Лобачевского.

Но консерватизм математиков не нужно и преувеличивать.

Гаусс великолепно понимал, что передовая группа ученых, и в первую очередь молодежь, поймет и оценит новые идеи.

Да и не таков был его характер, чтобы отступать перед возможными неприятностями.

Во-первых, пожалуй, основная черта его характера — суровая, требовательная гордость, едва ли не гордыня.

А во-вторых, математику он не предавал. Ей он поклонялся с ледяной страстностью пуританина и для нее пошел бы на все. Так что никакие призраки не остановили бы его.

Второе предположение: «Гаусс не считал проблему столь уж существенной, и у него попросту «не доходили руки» до неевклидовой геометрии» — столь же нелепо.

Это означало бы, что Гаусс не более чем весьма ограниченный математик без настоящей математической культуры.

К тому же в многочисленных письмах Гаусса, где он пишет о неевклидовой геометрии, непрестанно слышишь — это проблема первого ранга; проблема центральная для математики.

В погоне за красотой - i_054.png

Снова остро необходимы риторические вопросы.

Какова же истинная причина?

Почему же Гаусс не обратил к этой теме всю силу и энергию своего поразительного, беспрецедентного таланта? Почему он не исчерпал проблему? Почему он молчал многие годы и в итоге позволил и Лобачевскому и Бояи опередить себя?

Полагаю: доза детектива вполне достаточна, и читатели заинтригованы. Поэтому без лишних слов рассмотрим единственное мыслимое объяснение.

Начнем с некоторого напоминания. Чтобы оно было убедительно, нам необходимо четко представлять постановку всей проблемы неевклидовой геометрии.

Как помните, говоря об аксиомах, аксиоматике, мы условились, что к аксиомам любой математической теории предъявляются лишь два требования — полнота и независимость. Полнота аксиом означает, что любое мыслимое утверждение относительно первичных понятий может быть доказано с их помощью.

27
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело