Выбери любимый жанр

Большая книга тайных знаний. Нумерология. Графология. Хиромантия. Астрология. Гадания - Шварц Теодор - Страница 8


Изменить размер шрифта:

8

Великий немецкий астроном Иоганн Кеплер первым обратил внимание на значение золотой пропорции для ботаники и называл ее продолжающей саму себя.

Позже золотое сечение превратилось в академический канон, однако затем в искусстве началась борьба с академической рутиной и о нем вновь надолго забыли. Заново открыл золотое сечение немецкий исследователь Адольф Цейзинг в середине XIX века. Он объявил его универсальным для всех явлений природы и искусства. Цейзинг проверял свою теорию на греческих статуях, вазах, архитектурных сооружениях, растениях, животных, птичьих яйцах, музыкальных тонах, стихотворных размерах. Ученый показал выражение золотого сечения в отрезках прямой и цифрах. Оказалось, что эти цифры составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и другую сторону.

Последовательность Фибоначчи

С историей золотого сечения связано имя математика Леонардо из Пизы, известного под именем Фибоначчи (сын Боначчи). Он был самым знаменитым математиком Средневековья. В 1202 году вышел в свет его труд «Книга об абаке» (счетной доске), где были собраны все известные в то время задачи, в том числе очень занятная задачка про кроликов. На примере живой природы она доходчиво разъясняла, что же такое последовательность Фибоначчи. Вот ее условие.

«Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения».

Поскольку первая пара кроликов – новорожденные, то на второй месяц они не дадут приплода, и останется одна пара. На третий месяц они произведут одну пару: 1 + 1 = 2. На четвертый месяц из двух пар потомство даст лишь одна пара (вторая еще не дает приплода): 2 + 1 = 3 пары. На пятый месяц две родившиеся на третий месяц пары дадут потомство: 3 + 2 = 5 пар. На шестой месяц потомство дадут только те пары, которые родились на четвертом месяце: 5 + 3 = 8 пар и т. д.

Размышляя над подобным явлением, Фибоначчи вывел следующий ряд цифр.

Большая книга тайных знаний. Нумерология. Графология. Хиромантия. Астрология. Гадания - i_008.jpg

Таким образом, из данной задачи выводится устойчивая закономерность, и эти числа образуют знаменитую последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233… Сами числа называются числами Фибоначчи, а их последовательность – последовательностью Фибоначчи.

Все достаточно просто, как все великое. В чем состоит смысл этой последовательности?

Оказывается, каждый ее член, начиная с третьего, равен сумме двух предыдущих: 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13; 8 + 13 = 21; 13 + 21 = 34 и т. д., а отношение смежных чисел ряда приближается к отношению золотого деления. Оно обозначается греческой буквой «фи» – Ф, и считается равным 1,618.

Оно дает непрерывное деление отрезка прямой в золотой пропорции, увеличение или уменьшение его до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Эту величину Лука Пачоли назвал Божественной пропорцией. Ее еще называют золотая пропорция, золотое среднее, золотое сечение. Именно это соотношение является одним из «сокровищ» геометрии.

Это еще не все. При делении любого члена последовательности Фибоначчи на следующий за ним получается величина, обратная фи (1: 1,618 = 0,618). Это примечательное явление, потому что оно также бесконечно.

При делении каждого числа на следующее за ним через одно получается 0,382.

1: 0,382 = 2,618.

Таким образом, выстраивается основной набор коэффициентов Фибоначчи: 4,235, 2,618, 1,618, 0,618, 0,382, 0,236, которые играют особую регулирующую роль в природе.

Ряд Фибоначчи остался бы всего лишь математическим казусом, если бы исследователи растительного и животного мира и искусства неизменно не приходили бы к этому ряду как арифметическому выражению закона золотого деления.

Следует подчеркнуть, что гениальный Фибоначчи всего лишь сформулировал и тем самым как бы напомнил человечеству золотую последовательность, которая была известна под названием золотое деление еще в древнейшие времена.

Просто удивительно, как последовательность Фибоначчи проявляется в живом мире. Сам атом «построен» по принципу золотого сечения. Этот принцип относится к большинству, если не ко всем сферам современной науки.

Представление о золотом сечении дополняет спираль, очень распространенная в природе. Спирально завитую раковину изучал Архимед и вывел с ее помощью уравнение. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Многие природные процессы развиваются именно по спирали. Например, метель закручивает снежные массы по спиралям, ураган формируется и раскручивается также по спирали. Обыкновенный паук плетет свою паутину спиралеобразно. Испуганное стадо северных оленей разбегается по спирали. Двойной спиралью закручена молекула ДНК. Гете называл спираль «кривой жизни». На ветках деревьев листья растут не беспорядочно, а винтообразно и в направлении по спирали. Спираль четко прослеживается в расположении семян подсолнечника.

Совместные исследования ботаников и математиков пролили свет на эти удивительные явления. Выяснилось, что в расположении листьев на ветке, семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а значит, закон золотого сечения. Ананас и кактус тоже воплощают принцип золотого сечения.

Эти закономерности проявляются в энергетических переходах элементарных частиц, в строении химических соединений, в планетарных и космических системах, в генных структурах живых организмов, в строении отдельных органов человека и тела в целом, а также в биоритмах и функционировании головного мозга в зрительном восприятии.

Загадочная пирамида. «Золотой статус» русской водки

Тайна пирамиды в Гизе долгое время оставалась неразгаданной. В отличие от других египетских пирамид она представляла собой головоломку из числовых комбинаций. Казалось, что в этих числах что-то зашифровано. Возможно, создатели великих творений древности таким образом закодировали свои познания. Со временем удалось выяснить, что это действительно очень важные сведения о пропорциях пирамиды. Это все те же числа из знаменитой последовательности Фибоначчи. Исследования пирамиды в Гизе лишний раз доказали обширность познаний того времени.

Теория чисел Фибоначчи и золотого сечения постоянно развивается. С ее использованием решаются кибернетические задачи. Алгебра гармонии, компьютеры третьего поколения, как и древняя пирамида Хеопса, созданы по принципу золотого сечения. Оказалось, что двойные сплавы обладают ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п.) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых пропорций.

Удивительное подтверждение закону гармонии дала и русская водка. Оказывается, этот уникальный отечественный продукт тоже отвечает принципу золотого сечения. Свой оптимальный состав, то есть 40°, русская водка приобрела более 100 лет назад, когда великий химик Д. И. Менделеев нашел идеальную пропорцию воды и спирта и вывел свой знаменитый рецепт: 1 литр водки при 40° спиртовой крепости весит ровно 953 грамма. В 1894 году на «Водку Московскую особенную» был получен патент Российской империи, и она была признана русским национальным продуктом. Так русская водка получила мировой «золотой статус». Это необычное для русской истории и культуры событие.

Д. И. Менделеев открыл, что соединение спирта с водой должно происходить путем смешивания не их объемов, а точных весовых частей. Ученый заметил любопытное явление: оказывается, спирт при соединении с водой производит удивительное сжатие всей смеси (500 граммов воды + 500 граммов спирта = 941 грамм водки). Изучение рецептуры водки (на 1 грамм спирта) приводит к математической формуле, где компоненты водочного состава действительно связаны с золотой пропорцией.

8
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело