Выбери любимый жанр

Истина в пределе. Анализ бесконечно малых - Дуран Антонио - Страница 31


Изменить размер шрифта:

31
Истина в пределе. Анализ бесконечно малых - i_070.jpg
Портрет Леонарда Эйлера кисти Иоганна Георга Брюкнера.

Д’Аламбер, Лагранж и Карл Маркс

Шел XVIII век, и Д’Аламбер, который обладал намного большим авторитетом в математике, чем Беркли, критически отнесся к понятию бесконечно малых: «Величина есть нечто или ничто; если она — нечто, то она еще не исчезла, если она ничто, то она исчезла в буквальном смысле. Предположение о том, что существует промежуточное состояние между этими двумя, есть химера».

Д’Аламбер во французской Энциклопедии дает примитивное определение предела, на которое Коши опирался при разработке фундамента математического анализа: «Одна величина называется пределом второй, если вторая может приблизиться к первой настолько, что будет отличаться от нее менее, чем на любую данную величину, но никогда не будет совпадать с ней». В своей статье о дифференциалах для этой же энциклопедии Д’Аламбер указал путь к четкому определению исчисления: «Ньютон использовал другой принцип, и можно сказать, что метафизика этого великого математика об исчислении флюксий очень точна и ясна, несмотря на то что допускает несовершенное толкование его мыслей. Я никогда не рассматривал дифференциальное исчисление как изучение бесконечно малых величин, но как метод первых и последних рассуждений, или, что есть одно и то же, метод нахождения пределов рассуждениям. Кто-то может счесть, что допущение бесконечно малых величин необходимо лишь для сокращения и упрощения рассуждений, но дифференциальное исчисление необязательно предполагает существование подобных величин. Более того, это исчисление заключается лишь в алгебраическом определении пределов рассуждения».

Истина в пределе. Анализ бесконечно малых - i_071.jpg
Мраморная статуя французского философа и математика Д’Аламбера.
Истина в пределе. Анализ бесконечно малых - i_072.jpg
Карл Маркс проявлял большой интерес к построению фундамента математического анализа. 

Совершенно иным путем следовал Лагранж, который в своей книге «Теория аналитических функций», опубликованной в 1797 году, определил производную f’(x) функции f(х) в точке x как коэффициент при h в разложении в степенной ряд функции f(x + h). Именно Лагранж ввел термин «производная» и первым стал обозначать производную функции f знаком апострофа — f’. К сожалению, его усилия оказались безуспешными и завершились неудачей, поскольку, как позднее показал Коши, функция f необязательно совпадает со степенным рядом, полученным на ее основе.

Стоит отметить, что работы Лагранжа по построению фундамента математического анализа очень ценил философ Карл Маркс, основатель марксизма. Маркс даже написал несколько трудов о производных и интегралах (1863—1883), однако в этот период уже появились работы Вейерштрасса, в которых была сформирована прочная основа математического анализа. Маркс рассматривал три этапа развития исчисления: мистическое дифференциальное исчисление Лейбница и Ньютона, рациональное дифференциальное исчисление Д’Аламбера и чисто алгебраическое исчисление Лагранжа. О математиках первого этапа он писал: «Они сами определили загадочный характер недавно открытого исчисления, что привело к получению верных результатов с помощью определенно ошибочных математических преобразований». К Д’Аламберу и Лагранжу он относился более снисходительно: «Д’Аламбер, лишив дифференциальное исчисление мистической завесы, совершил огромный шаг вперед. <…> Лагранж взял за основу теорему Тейлора, которая является наиболее общей и широкой, и в то же время описывает рабочую формулу дифференциального исчисления».

Огюстен Коши

В первой половине XIX века был окончательно сформирован четкий фундамент анализа бесконечно малых. Решение этой задачи начал Коши, а завершил Вейерштрасс. Значимый вклад также внес Бернард Больцано своими работами о непрерывных функциях, которые выходят за рамки этой книги.

Коши удалось создать математическое течение, целью которого было добиться большей строгости доказательств. Это течение стало основополагающим для математики XIX века.

Эту точку зрения он пытался донести до своих учеников в Политехнической школе, где преподавал с 1817 по 1830 год, а также излагал в своих работах. Основными его трудами, о которых мы упомянем, были «Курс анализа» (1821) и «Резюме лекций по исчислению бесконечно малых» (1823).

«Курс анализа» был ответом Коши на критику со стороны его коллег по ученому совету Политехнической школы, высказанную в адрес его методики преподавания механики и анализа студентам первого года обучения. Во введении он явно указывает цель своей работы: «Я попытался изложить методы, требуемые геометрией, никогда не обращаясь к аргументам, следующим из общности алгебры. Рассуждения такого типа, которые иногда допускаются, особенно при переходе от сходящихся рядов к расходящимся и от вещественных величин к мнимым, лишь указывают путь к истине и не связаны с точностью, которой должна гордиться математика». «Общность алгебры», о которой упоминает Коши, означает признанный всеми с конца XVI века факт, согласно которому все, что верно для вещественных чисел, так же верно и для комплексных; все, что верно для конечных величин, применимо и к бесконечным; все, что верно для сходящихся рядов, верно и для расходящихся.

В качестве основного понятия анализа бесконечно малых Коши предложил понятие предела, которое определил так: «Когда последовательные значения переменной бесконечно приближаются к конкретному значению так, что в итоге отличаются от него на произвольно выбранную величину, последнее значение называется пределом остальных».

Используя понятие предела, Коши определил бесконечно малые как переменные, которые стремятся к нулю: «Когда последовательные значения переменной бесконечно уменьшаются так, что становятся меньше любой заданной величины, эта переменная называется бесконечно малой. Предел таких переменных равен нулю».

Он также ввел понятие предела последовательности, которое с дополнениями Вейерштрасса используется и сейчас. Коши также установил, что можно говорить о сумме ряда лишь в том случае, когда он сходится, и определил ее как предел последовательности частичных сумм ряда.

На пятистах страницах «Курса анализа» также приводятся определения непрерывной функции, комплексного числа, формулируются критерии сходимости рядов и так далее.

Работы Коши о сходимости рядов вызвали большое возбуждение. Рассказывают, что после собрания Французской академии наук, где ученый изложил свои идеи о сходимости рядов, обеспокоенный Лаплас заперся у себя дома и не выходил, пока не проверил, что все ряды, использованные им в «Небесной механике», сходятся, и лишь тогда вздохнул с облегчением.

Коши планировал, что «Курс анализа» будет состоять из двух томов, но неблагоприятные отзывы заставили его отказаться от написания второго тома. Суть критики сводилась к тому, что книга, по мнению руководства Политехнической школы, не подходила для образования будущих инженеров. Поэтому Коши решил пересмотреть идею о публикации второго тома и вместо этого выпустил дополнение к «Курсу анализа», представлявшее собой краткое изложение его лекций. Первый том увидел свет в 1823 году под названием «Резюме лекций по исчислению бесконечно малых», где давалось современное определение производной как предела

Истина в пределе. Анализ бесконечно малых - i_073.png

когда h стремится к 0.

КОШИ: СТРОГОСТЬ ПРЕВЫШЕ ВСЕГО

Огюстен Луи Коши родился в 1789 году, спустя несколько месяцев после начала Великой французской революции. Он занимает почетное место среди ведущих математиков первой половины XIX века. Благодаря ему был сделан значимый шаг в сторону большей логической строгости математических рассуждений. Так, в статье Энциклопедии Британника о нем сказано: «Коши был одним из величайших математиков современности. Одним из наиболее значительных его достижений является четкость и строгость введенных им методов. Первый этап логической строгости, характерной для современной математики, берет начало в его лекциях и книгах по математическому анализу, написанных в 1820-1830 годах». Также всегда указывается, что он был разносторонне образованным человеком и интересовался классическими языками. Он был ревностным католиком и яростно защищал право Бурбонов на французский престол, дарованное Богом. «Его коллеги часто упрекали его в непреклонном ханжестве и агрессивном религиозном фанатизме»,- говорится об этом в уже упомянутой Энциклопедии Британника. Он был преподавателем Политехнической школы и членом Французской академии наук. По политическим мотивам ему пришлось покинуть Францию на период с 1830 по 1838 год. Умер Коши в 1857 году.

31
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело