Выбери любимый жанр

Teopeмa Гёделя - Нагель Эрнст - Страница 18


Изменить размер шрифта:

18

Платонизм (реализм) — доктрина, согласно которой математика не творит и не придумывает рассматриваемые в ней «объекты», а открывает их, подобно тому как, например, Колумб открыл Америку. Таким образом, согласно этой точке зрения, объекты должны в некотором смысле «существовать» до их «открытия». Платонистская доктрина не предполагает, что объекты математического исследования находятся между собой в пространственно-временных отношениях. Обьекты эти суть отделенные от материальных оболочек вечные Формы, прототипы, населяющие особые абстрактные Сферы, доступные лишь Интеллекту. Согласно такой концепции треугольные или круглые формы физических предметов, данные нам в ощущениях, сами по себе вовсе не являются объектами математического исследования. Эти пространственные формы суть лишь несовершенные воплощения единого «совершенного» Треугольника или «совершенного» Круга, вечных, неизменных, лишь частично проявляющихся в облике материальных предметов и являющихся подлинными объектами рассмотрения математической мысли. Сам Гёдель обнаружил близость к такого рода воззрениям, заявляя, «что допущение… классов и общих понятий столь же законно, как и допущение физических тел… и имеются столь же высокие основания верить в их существование» (из работы Гёделя «Russell's, Mathematical Logic» в книге The Philosophy of Bertrand Russei. Evanston; Chicago, 1944. C. 137). (Данная здесь авторами характеристика «платонизма» довольно-таки поверхностна, а традииионная квалификаиия Гёделя как платониста далеко не бесспорна. Впрочем, тема эта далеко выходит за рамки настоящей книги. См., например: Френкель А., Бар-Хиллел И. Основания теории множеств / Пер. с англ. М.: Мир, 1966. Гл. X. § 8; 3-е изд. М.: URSS, 2010. Прим. перев.)

Заключения, к которым пришел Гёдель, порождают, естественно, и вопрос, можно ли построить вычислительную машину, сравнимую по своим «творческим» математическим возможностям с человеческим мозгом. Современные вычислительные машины обладают некоторым точно фиксированным запасом команд, которые умеют выполнять их элементы и блоки; команды соответствуют фиксированным правилам вывода некоторой формализованной аксиоматической процедуры. Таким образом, машина решает задачу, шаг за шагом выполняя одну из «встроенных» в нее заранее команд. Однако, как видно из гёделевской теоремы о неполноте, уже в элементарной арифметике натуральных чисел возникает бесчисленное множество проблем, выходящих за пределы возможностей любой конкретной аксиоматической системы, а значит, и недоступных для таких машин, сколь бы остроумными и сложными ни были их конструкции и с какой бы громадной скоростью ни проделывали они свои операции. Для каждой конкретной задачи в принципе можно построить машину, которой эта задача была бы под силу, но нельзя создать машину, пригодную для решения любой задачи. Правда, и возможности человеческого мозга могут оказаться ограниченными, так что и человек тогда сможет решить не любую задачу. Но даже если это так, структурные и функциональные возможности человеческого мозга пока еще намного больше по сравнению с возможностями самых изощренных из мыслимых пока машин, так что непосредственной опасности вытеснения людей роботами не видно[20].

При всем сказанном теорему Гёделя отнюдь не следует расценивать как некое основание для интеллектуального пессимизма или оправдания мистических представлений о разуме. Обнаружение того факта, что для любой формальной системы существуют арифметические истины, которые нельзя в ней формально доказать, вовсе не означает наличия каких-то совершенно непознаваемых истин или же что роль строгого доказательства отныне должна занять некая «мистическая» интуиция, заслуживающая большего доверия, чем применяемые нами формы интеллектуального исследования. Не означает оно и утверждаемой некоторыми мыслителями «принципиальной ограниченности человеческого мышления». Означает оно лишь то, что возможности нашего мышления не сводятся к полностью формализуемым процедурам и что нам еще предстоит открывать и изобретать новые принципы доказательств. Мы ведь видели уже, что истинности некоторых математических утверждений, не выводимых из данного множества аксиом, можно тем не менее установить при помощи метаматематических рассуждений. И утверждать, что для обоснования таких формально недоказуемых (но устанавливаемых посредством метаматематических рассуждений) истин можно в лучшем случае рассчитывать лишь на интуицию, было бы совершенно безответственно.

Констатированные выше ограничения возможностей вычислительных машин не свидетельствуют и о беспочвенности надежд на объяснение явлений жизни и человеческого мышления в физико-химических терминах. Сама по себе теорема Гёделя не отвергает и не подтверждает возможности такого рода объяснений. Единственный непреложный вывод, который мы можем сделать из гёделевской теоремы о неполноте, состоит что природа и возможности человеческого разума неизмеримо тоньше и богаче любой из известных пока машин. И работа самого Гёделя является замечательным примером этой тонкости и богатства, дающим повод отнюдь не для уныния, а, наоборот, для самых смелых надежд на силу творческой мысли.

Послесловие переводчика

Курт Гёдель — крупнейший специалист по математической логике — родился 28 апреля 1906 г. в Брюнне (ныне г. Брно, Чехия). Окончил Венский университет, где защитил докторскую диссертацию, был доцентом в 1933–1938 гг. После аншлюса эмигрировал в США. С 1940 по 1963 г. Гёдель работает в Принстонском институте высших исследований (с 1953 г. — профессор этого института). Гёдель — почетный доктор Йельского и Гарвардского университетов, член Национальной академии наук США и Американского философского общества.

В 1951 г. К. Гёдель удостоен высшей научной награды США — Эйнштейновской премии. В статье, посвященной этому событию, другой крупнейший математик нашего времени Джон фон Нейман писал[21]: «Вклад Курта Гёделя в современную логику поистине монументален. Это — больше, чем просто монумент, это веха, разделяющая две эпохи… Без всякого преувеличения можно сказать, что работы Гёделя коренным образом изменили сам предмет логики как науки».

Действительно, даже сухой перечень достижений Гёделя в математической логике показывает, что их автор по существу заложил основы целых разделов этой науки: теории моделей (1930 г.; так называемая теорема о полноте узкого исчисления предикатов, показывающая, грубо говоря, достаточность средств «формальной логики» для доказательства всех выражаемых на ее языке истинных предложений), конструктивной логики (1932–1933 гг.; результаты о возможности сведения некоторых классов предложений классической логики к их интуиционистским аналогам, положившие начало систематическому употреблению «погружающих операций», позволяющих осуществлять такое сведение различных логических систем друг к другу), формальной арифметики (1932–1933 гг.; результаты о возможности погружения классической арифметики в интуиционистскую, показывающие в некотором смысле непротиворечивость первой относительно второй), теории алгоритмов и рекурсивных функций (1934 г.; определение понятия общерекурсивной функции, сыгравшего решающую роль в установлении алгоритмической неразрешимости ряда важнейших проблем математики, с одной стороны, и в реализации логико-математических задач на электронно-вычислительных машинах — с другой), аксиоматической теории множеств (1938 г.; доказательство относительной непротиворечивости аксиомы выбора и континуум-гипотезы Кантора от аксиом теории множеств, положившее начало серии важнейших результатов об относительной непротиворечивости и независимости теоретико-множественных принципов).

Но даже если бы на «счету» Гёделя не было ни одного из таких замечательных достижений, достаточно было бы одной его работы, чтобы имя ее автора составило целую эпоху в истории науки. Именно этой двадцатипятистраничной статье двадцатипятилетнего автора и посвящена книжка известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, переведенная на большинство европейских языков.

18
Перейти на страницу:

Вы читаете книгу


Нагель Эрнст - Teopeмa Гёделя Teopeмa Гёделя
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело