Выбери любимый жанр

Расшифрованный код Ледового человека: От кого мы произошли, или Семь дочерей Евы - Сайкс Брайан - Страница 45


Изменить размер шрифта:

45

Как часто в неспособности (а то и нежелании) произвести на свет сына обвиняли именно жен.

Точно так же, как митохондриальная ДНК сопровождает «материнскую» генеалогию через поколения, Y-хромосома, наследуемая сыновьями от отцов, должна была бы проследить, как зеркальное отражение, «отцовский» путь от одного поколения к другому. Если бы Y-хромосому можно было маркировать генетически, если бы она не была вовлечена в рекомбинацию, которая перетасовывает информацию, тогда бы мы имели хорошие основания считать, что нашли прекрасное дополнение к митохондриальной ДНК, помогающее читать историю не женщин, а мужчин. Y-хромосома, как и все остальные хромосомы ядра,— это очень длинная, линейная молекула ДНК. В то время как кольцеобразная молекула митохондриальной ДНК состоит всего из шестнадцати с половиной тысяч оснований, Y-хромосома растянулась от одного конца до другого на шестьдесят миллионов оснований. Для хромосомы человека это отнюдь не предельный размер, но все же митохондриальная ДНК «укладывается» в нее более чем в четыре тысячи раз. Кроме этого, в пределах хромосомы происходит некоторая перетасовка генов. На каждом конце Y-хромосомы есть секция ДНК, которая участвует в рекомбинации с Х-хромосомой, но поскольку эти секции небольшие и составляют всего 10% всей хромосомы, то это не представляет серьезной проблемы. Гены, расположенные в рекомбинирующей части Y-хромосомы, не смогут свидетельствовать о генеалогии, непредсказуемо переходя от мужчин к женщинам, как и другие «ядерные» гены. Однако оставшиеся девяносто процентов Y-хромосомы между двумя кончиками, участвующими в рекомбинации, не перемешиваются. Этот длинный сегмент путешествует из поколения в поколение неизменным. Но отличаются ли Y-хромосомы друг от друга и если отличаются, то в чем различие между ними? При условии многообразия и различий между ними Y-хромосомы могут быть использованы для прочтения человеческой истории. Ведь если бы все Y-хромосомы были совершенно одинаковы, они бы никак не соответствовали нашим целям.

Хромосомы — объект интенсивного изучения специалистов-цитогенетиков, которые трудятся в лабораториях медицинской генетики. Здесь могут поставить диагноз наследственных нарушений, как, например, синдром Дауна, или объяснить причины бесплодия. Занимаясь этими исследованиями, цитогенетики заметили, что некоторые Y-хромосомы были намного длиннее, отклоняясь от среднестатистической длины. Это, конечно, звучало многообещающе, но вряд ли помогло бы с точностью различить Y-хромосомы у большого количества испытуемых. Кроме того, длина Y-хромосом не была стабильной, изменялась от одного поколения к следующему. Нам требовался столь же надежный метод тестирования ДНК Y-хромосомы, что и тот, благодаря которому митохондриальная ДНК стала такой героиней. Тогда просто и дешево можно было бы напрямую идентифицировать Y-хромосомы сотен и тысяч добровольцев. Но как определить, в каких участках Y-хромосом имеются наибольшие различия между людьми, как найти эти участки?

Все многочисленные варианты митохондриальной ДНК сконцентрированы в маленькой кольцеобразной молекуле, длиной всего несколько тысяч оснований. Еще удобнее работать с контрольным регионом, в котором на отрезке длиной в шестьсот оснований сосредоточена треть всей информации — такое количество оснований можно без труда проанализировать на специальном автомате, который определит последовательность в один присест. Можно ли подыскать нечто подобное в Y-хромосоме? Ответа пришлось ждать недолго. Сразу многие лаборатории, надеясь на успех, начали искать различия между Y-хромосомами, сопоставляя последовательность какого-либо сегмента Y-хромосом у добровольцев, подбирая для этого сравнения как можно больше разных и не связанных между собой людей. Одно из первых исследований определило последовательность четырнадцати тысяч оснований в Y-хромосомах двенадцати человек из самых разных географических регионов. При этом была обнаружена только одна мутация. Если бы у того же количества людей взяли четырнадцать тысяч оснований митохондриальной ДНК, исследование показало бы десятки мутаций. Другая лаборатория определила последовательность сегмента одного гена Y-хромосомы, длиной 700 оснований, у тридцати восьми человек — не было обнаружено ни единой мутации!

Для ученых, которые этим занимались (слава Богу, меня среди них не было), результаты были удручающими. Было о чем подумать. Почему Y-хромосомы по всему миру такие одинаковые? Y-хромосомы не несли в себе никаких значимых генов, которые бы заслуживали внимания, а были полны «бросовой» ДНК, не имеющей очевидной функции. Но именно поэтому в Y-хромосоме можно было ожидать большего, а не меньшего количества вариаций, чем в обычных, богатых генами хромосомах. Мутациям ничто не мешает скапливаться в «бросовой» ДНК, потому что это ни на что не влияет, и точная последовательность большой роли не играет. Мутации, возникающие в тех генах, которые имеют действительно важные функции, по большей части препятствуют осуществлению этих функций и поэтому вскоре устраняются в результате естественного отбора. То, что в Y-хромосоме почти не было обнаружено мутаций, было странным и загадочным.

Одна популярная гипотеза пыталась объяснить это отсутствие вариаций тем фактом, что мужчины могут иметь больше детей, чем женщины. Если в прошлом лишь немногие мужчины обзаводились большим количеством детей (в том числе и сыновьями), то их Y-хромосомы быстро распространялись в популяции за счет Y-хромосом их современников — неудачливых мужчин, имевших мало детей или вовсе бездетных. Если такое повторялось многократно, продолжалось рассуждение, сейчас в обиходе должно остаться гораздо меньше различающихся Y-хромосом, чем если бы у всех мужчин количество детей было приблизительно равным. То, что на свете порой жили мужчины выдающейся плодовитости — правда. Мировой рекорд принадлежит Исмаилу, правителю Марокко, о котором сообщали, что он был отцом 700 сыновей (и не исключено, столько же дочерей) к 1721 году, когда ему исполнилось сорок девять лет. Скончался он в 1727 году — то есть имел еще шесть лет на то, чтобы завести еще несколько детей. Самая плодовитая женщина отстает от него на порядок. Это русская крестьянка Федора Васильева, которая между 1725 и 1765 годами произвела на свет шестьдесят девять детей. При этом у нее рождались близнецы — шестнадцать двойней, семь тройней и четыре раза по четыре ребенка.

Эта славная женщина была уникальна в детородном отношении. Количество детей, которых может произвести на свет одна женщина, лимитировано в силу ее биологических особенностей, которые ограничивают частоту рождений примерно одной беременностью в год. Мужчины, напротив, не связаны подобными ограничениями и могут, по крайней мере, теоретически, иметь тысячи детей. Но фантазия о полигамных самцах с гигантской плодовитостью, настолько засеявших целый мир своим потомством, что от этого снизилась вариабельность Y-хромосом,— оказалась всего лишь фантазией. Благодаря огромной кропотливой работе, проведенный в лабораториях по всему миру в течение последних десяти лет, в Y-хромосомах было, в конце концов, выявлено довольно много мутаций.

Эти мутации отчетливо делились на два типа. Первый был в точности таким же, какой мы уже встречали в митохондриальной ДНК: простая замена одного основания на другое. Однако в отличие от митохондрий, где эти мутации аккуратно упакованы в контрольный регион, здесь они раскиданы через неправильные промежутки по всей длине Y-хромосомы. Это доставляло громадные неудобства, потому что каждую мутацию приходилось тестировать индивидуально, но это не было непреодолимым препятствием. Другой тип мутаций был очень нетипичным для митохондриальной ДНК, хотя один раз мы встретили такую, работая с полинезийскими пробами. Это было, если помните, выпадение из последовательности ДНК целого фрагмента длиной в девять оснований. Когда мы внимательно изучили последовательность ДНК вокруг выпавшего фрагмента, то стало ясно, что, собственно говоря, не у полинезийцев выпал фрагмент, а у всех остальных — у нас с вами — эти девять оснований продублированы, повторены дважды. Такой тип мутаций, когда короткие участки ДНК повторяются еще и еще раз, для ядерных хромосом оказался весьма распространенным и, хвала небесам, Y-хромосома в этом отношении не была исключением. В Y-хромосоме обнаруживаются десятки таких повторяемых сегментов, а разница между отдельными людьми состоит в количестве повторений. К счастью, это легко измерить. Этот богатый источник вариаций внезапно показал, что существуют тысячи разнообразных Y-хромосом и их можно отличить друг от друга по двум типам мутаций. Генетическая идентификация Y-хромосом становилась реальностью.

45
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело