Кровь: река жизни. От древних легенд до научных открытий - Азимов Айзек - Страница 21
- Предыдущая
- 21/50
- Следующая
Тем не менее, кажется, сейчас проблема уже решена.
Во-первых, атомы молекул белков расположены не в случайном порядке. Они располагаются маленькими группами, образуя соединения под названием аминокислоты, которые, в свою очередь (к сожалению), располагаются совершенно непредсказуемым образом. Существует девятнадцать различных аминокислот, из которых состоят почти все белки, и примерно столько же, которые встречаются только в некоторых белках. В молекуле гемоглобина нет необычных аминокислот — только девятнадцать обычных.
Молекула гемоглобина состоит примерно из шестисот аминокислот. Одна аминокислота в ней встречается около семидесяти пяти раз, другая — всего один раз, а остальные количественно представлены примерно равномерно. Поскольку они не расположены в повторяющемся порядке, проблема определения, где находится какая аминокислота, кажется неразрешимой. Число возможных комбинаций аминокислот в молекуле гемоглобина более чем 10619, то есть единица с 619 нулями. Это порядочное количество. Как в нем разобраться?
Известно, что каждая молекула гемоглобина состоит из двух одинаковых частей, поэтому можно узнать расположение только трехсот аминокислот в половине молекулы, но и это тоже непросто. Молекулу необходимо расщепить на более мелкие части.
Вернон М. Ингрэм из Кембриджского университета сделал это, обработав молекулу гемоглобина пищеварительным ферментом — трипсином. Трипсин вызывает расщепление цепи аминокислот в тех местах, где расположены аминокислоты лизин и аргинин. В результате половина молекулы гемоглобина распадается на двадцать восемь фрагментов.
Эти фрагменты представляют собой короткие цепочки аминокислот, которые называют пептидами. Некоторые пептиды могут состоять всего из двух или трех аминокислот, другие — из дюжины или больше, в зависимости от расположения групп лизина и аргинина в исходной цепочке. Естественно, все двадцать восемь пептидов смешаны между собой, и их нужно разделить.
Для этого каплю смеси помещают на пористую бумагу (фильтровальную бумагу, которая первоначально использовалась в химических лабораториях для фильтрования — отделения твердых частиц от жидкости), которую затем смачивают нужным раствором. К ней прикрепляют два электрода и через бумагу пропускают электрический ток. Пептиды, подобно протеинам, устремляются к положительному или отрицательному электроду с разной скоростью, которая зависит от степени электрического заряда каждого пептида. Это и есть электрофорез на бумаге, о котором я уже упоминал.
В результате этого процесса пептиды делятся на несколько групп и распределяются в виде пятен по бумаге. Эти пятна нельзя рассмотреть невооруженным глазом, но их можно увидеть, если прибегнуть к некоторым манипуляциям. Бумагу можно обработать химическим составом, который вступит с пептидами в реакцию, в результате которой образуются окрашенные соединения. Или можно использовать ультрафиолетовые лучи, чтобы обычно невидимые вещества, поглотив их, проступили в виде темных пятен, стали черными или, наоборот, стали светиться. В каждом пятне локализовано несколько пептидов с одинаковыми электрическими свойствами, поэтому эти пептиды нужно разделять дальше. Это делается при помощи хроматографии, о которой стоит поговорить особо.
Хроматографию изобрел в 1906 году русский ботаник Михаил Цвет. Он хотел разделить различные пигменты из листьев растений. Эти пигменты были настолько схожи по химическому составу, что обычные методы разделения были не эффективны. Тогда Цвет использовал совершенно новый способ.
Он приготовил из смеси пигментов раствор и вылил его в колонку, наполненную измельченным известняком. Пигменты прикрепились к поверхности крошечных частиц в верхнем слое известняка, а жидкость, в которой они были растворены, прошла по колонке вниз и вышла из нее. Первоначально окрашенный раствор вышел бесцветным, а в верхней части колонки осталась цветная полоска пигмента.
Затем Цвет пропустил через колонку другую жидкость — петролейный эфир. Эфир медленно вымывал пигмент из известняка. Причем каждый пигмент вымывался с различной скоростью. Те, которые связывались с известняком слабо (или очень хорошо растворялись в петролейном эфире), вымывались довольно быстро; те, которые связывались более прочно (или плохо растворялись в эфире), вымывались медленнее. Со временем исходная смесь пигментов была разделена на несколько цветных полос, в каждой из которых находился отдельный пигмент. Эти полосы можно было полностью вымыть из колонки и исследовать по отдельности.
Цвет назвал свой метод хроматографией, от греческих слов, означающих «цветное письмо», потому что состав смеси вырисовывался в виде цветных поперечных полос, располагающихся вдоль колонки. Естественно, этот метод применим и к бесцветным соединениям.
Много лет метод Цвета не получал признания, потому что первый доклад ученого был напечатан в довольно плохом немецком ботаническом журнале, а последующие доклады Цвета были на русском языке. Он был всего-навсего русским ботаником, и немецкие биохимики, правящие в науке в те времена, не обращали на него внимания. Однако в 1931 году немецкий биохимик Рихард Вильштеттер наткнулся на описание этого метода и начал его использовать. После этого хроматография получила широкое распространение.
Кроме известняка, в качестве наполнителя колонки использовались и другие измельченные вещества: окись алюминия, крахмал, позже стали применять ионообменные смолы. Смолы представляют собой ломкие вещества янтарного цвета, состоящие из крупных молекул, в состав которых входит бесчисленное количество групп атомов. Эти атомы в результате химических реакций способны в одних условиях соединиться с определенными видами молекул и, наоборот, отсоединяться от них в других условиях. Смолы разного состава обладают большим разнообразием свойств и поэтому подходят для многих видов исследований. Некоторые даже могут опреснять воду. Морскую воду пропускают через колонку со смолой и получают питьевую воду.
Большой шаг вперед был сделан в 1944 году, когда группа британских биохимиков из Кембриджского университета показала, что разделение смеси веществ на составляющие компоненты можно производить на фильтровальной бумаге. Вместо того чтобы пропускать растворитель через колонку, заполненную измельченным веществом, они смачивали им фильтровальную бумагу. Растворитель поднимался (или спускался) по бумаге, проходил то место, куда наносили каплю исследуемой смеси, и распространялся по бумаге дальше, увлекая за собой компоненты смеси, которые двигались с различной скоростью. В результате одно пятно смеси превращалось в несколько, каждое из которых соответствовало отдельному компоненту. Такой способ получил название бумажной хроматографии и сегодня является одним из часто применяемых методов из методического арсенала биохимиков. Почти каждое исследование завершается разделением смеси или очисткой отдельного вещества при помощи бумажной хроматографии.
Вернемся теперь к доктору Ингрэму и пептидной смеси, полученной при расщеплении гемоглобина.
Мы остановились на полученных с помощью электрофореза на бумаге пятнах, в каждом из которых находилось несколько пептидов. Затем он провел бумажную хроматографию пятен: смочил бумагу раствором, разделил их на «подпятна».
Когда все было сделано, на фильтровальной бумаге образовалось двадцать восемь отдельных пятен. Ингрэм пронумеровал каждое и проделал то же самое, только на этот раз с гемоглобином S, а не с гемоглобином А. При разделении фрагментов гемоглобина S у него также получилось двадцать восемь пятен.
Можно сказать, что он взял у каждой молекулы «отпечатки» и теперь ему оставалось их сравнить. Оказалось, что они у молекул гемоглобина А и S были одинаковы, за исключением одного пятна. Пятно под номером 4 в образце гемоглобина S отчетливо переместилось влево по сравнению с аналогичным пятном гемоглобина А.
- Предыдущая
- 21/50
- Следующая