Эволюция Вселенной и происхождение жизни - Теерикор Пекка - Страница 43
- Предыдущая
- 43/138
- Следующая
Обычно для демонстрации неевклидовой геометрии в качестве примера используют поверхности. Наша трехмерная Вселенная (мы не учитываем время) в практическом отношении плоская, поэтому в ней мы легко можем заметить кривизну обычных поверхностей. Но трудно представить четырехмерное пространство, не разбираясь в том, что означает кривизна. Наш мозг не привык решать такие задачи, поэтому лучше ограничиться рассмотрением двумерных поверхностей. Сферическая Вселенная имеет странное свойство — у нее конечный объем, хотя ни в каком направлении невозможно найти ее край. Это легче понять, если представить поверхность сферы, которая позволяет нам заметить и другое интересное свойство сферической геометрии: идущий вперед путешественник вернется в начальную точку своего пути после того, как обойдет вокруг света. Путешествуя по Земле, если вы движетесь все время вперед по большому кругу, вы тоже вернетесь в исходную точку. Странный результат, если вы считаете Землю плоской!
Как легко понять, двумерным аналогом сферической Вселенной служит поверхность сферы. Не обязательно иметь возможность взглянуть на нее из третьего измерения или же обходить сферу кругом, чтобы догадаться о кривизне сферической поверхности. Существо, живущее на сферической поверхности, не способное выйти в третье измерение над этой поверхностью и даже не имеющее представления об этом третьем измерении, все равно может проводить построения на этой поверхности, чтобы узнать ее геометрические свойства. Оно может нарисовать треугольник и измерить сумму его внутренних углов. Если результат получится больше 180°, это докажет, что существо живет на сферической поверхности (рис 15.3). Или так: можно нарисовать круг и измерить его. Если отношение длины окружности к ее диаметру меньше, чем π (= 3,141592…), то существо будет знать, что оно живет в мире сферической геометрии.
В противном случае, если сумма внутренних углов треугольника меньше чем 180°, а отношение длины окружности к ее диаметру больше я и если через данную точку можно провести любое число линий, параллельных данной линии, то существо понимает, что оно живет в гиперболическом пространстве. Гиперболическое пространство тянется на бесконечное расстояние и не имеет аналога в обычной жизни. Форма седла, точнее — его центральной части, более или менее напоминает ограниченную область гиперболической поверхности.
Границей между сферическими и гиперболическими поверхностями служит плоская поверхность, или двумерное евклидово пространство. Привычные для нас законы евклидовой геометрии справедливы в этом и только в этом пространстве: сумма внутренних углов треугольника точно равна 180°, отношение длины окружности к ее радиусу в точности равно я, а через точку можно провести одну и только одну прямую, параллельную другой прямой (рис. 15.4).
Рис. 15.3. Треугольники в плоском, гиперболическом и сферическом пространстве. Сумма углов в разных пространствах неодинакова.
Рис. 15.4. Параллельные линии в разных пространствах. В плоском пространстве через данную точку Р можно провести только одну прямую, параллельную другой прямой. В гиперболическом пространстве можно провести любое количество таких прямых. В сферическом пространстве все прямые линии пересекаются, поэтому провести параллельную линию невозможно.
Математик Вильям Клиффорд (1845–1879) переводил труды Римана на английский язык и в процессе этой работы был очарован идеями Римана о связи между физическими явлениями и геометрией. Он стал развивать эти идеи. Читая лекцию в Кембриджском философском обществе, посвященную «науке о пространстве», он обсуждал нашу возможность судить о геометрии пространства на астрономических масштабах и на масштабах столь малых, что они недоступны для наблюдения (то есть в мире элементарных частиц). При этом он утверждал, что «малые области пространства фактически похожи на небольшие холмики на поверхности, которая в среднем плоская, таким образом, обычные законы геометрии к ним неприменимы». Он полагал, что «это свойство искривленности или искаженности непрерывно передается от одной области пространства к другой наподобие волны» и что «изменение кривизны пространства — это как раз то, что реально происходит в явлении, которое мы называем движением материи».
Клиффорд заключил, что весь физический мир (движение всей материи) есть результат этого свойства пространства. Для того времени его идеи были революционными, поскольку само понятие пространство еще не было осознано многими учеными. В год рождения Эйнштейна умер Клиффорд. Он был совсем молод и не сумел более глубоко разработать свою идею. Его видение мира опередило общую теорию относительности на 40 лет.
Отправной точкой для общей теории относительности Эйнштейна стал закон Галилея о том, что все тела падают с одинаковым ускорением независимо от их массы (если пренебречь трением о воздух). Это эмпирическое правило можно понять как следствие Второго закона Ньютона (сила равна массе, умноженной на ускорение) и Ньютонова закона гравитации (сила тяготения пропорциональна массе тела). Оба эти закона содержат один и тот же коэффициент пропорциональности — массу тела, поэтому ускорение падающего вниз тела не зависит от его массы. Но раз мы имеем дело с двумя независимыми законами природы, то должны поинтересоваться: как получилось, что оба они содержат один и тот же коэффициент.
Согласно Эйнштейну, эго неслучайно. Закон Галилея имеет глубокий смысл, он показывает, что гравитация не реальная сила, а лишь фиктивная. Нам уже знакомы фиктивные силы: например, Кориолисова сила, описанная французским физиком Гаспаром Кориолисом (1792–1843). В Северном полушарии ветры, дующие с юга, пытаю тся повернуть на восток, а дующие с севера поворачивают на запад. Это приводит к вращению воздушных потоков против часовой стрелки вокруг областей низкого давления. Сила Кориолиса — это всего лишь проявление вращения Земли вокруг оси, а вовсе не реальная сила. Для фиктивных сил свойственно, что они сообщают одинаковое ускорение всем телам независимо от их характеристик, таких как масса, электрический заряд и т. п.
Точно так же ускорение силы тяжести не зависит от свойств тела. Фиктивную силу легко исключить (в принципе); например, если остановить вращение Земли, то сила Кориолиса пропадет. А гравитация исчезает при свободном падении. В свободно падающей кабине мы не чувствуем свой вес, например — в кабине лифта, когда рвется его трос, а тормоза отказывают. Вдали от Земли можно искусственно создать такую же силу тяжести, как на земной поверхности, если заставить космический корабль двигаться с ускорением 9,8 м/с2, равным тому ускорению земной гравитации, которое мы обычно испытываем (рис. 15.5).
Рис. 15.5. Ньютон и Эйнштейн размышляют о падении яблока. Оба находятся в закрытой комнате. Ньютон — на Земле, а Эйнштейн — в космическом корабле, летящем с ускорением 9,8 м/с2. В обоих случаях падение яблока происходит одинаково.
Эйнштейн пришел к выводу, что если ускорение силы тяжести так легко создать и уничтожить, то оно должно быть отражением какого-то более глубокого явления. Этим явлением, по мнению Эйнштейна, является кривизна пространства. Материя заставляет окружающее пространство искривляться, а тела реагируют на эту кривизну таким образом, что это выглядит как действие гравитации.
Зная геометрию пространства, можно вычислить орбиту тела, на которое не действует ничто кроме гравитации. Теперь мы не считаем гравитацию силой, а говорим о свободном движении. В плоском пространстве такое движение происходит по прямой линии, но в искривленном пространстве свободное движение может происходить практически по замкнутой орбите. Возьмем обращающуюся вокруг Солнца планету. Она движется вперед по прямой, то есть по кратчайшему пути, но так как Солнце искривило пространство, орбита планеты становится эллипсом. Рисунок 15.6 иллюстрирует это в виде растянутого горизонтально куска резины («плоское пространство»). Тяжелый шар, помещенный в центр этой поверхности, образует на ней впадину. Теперь покатим по ней маленький шарик. Подтолкнув этот шарик в нужном направлении, вы сможете заставить его прокатиться вокруг большого шара, возможно, по эллиптической орбите. Это выглядит так, будто существует центральная сила, притягивающая шарик, в то время как орбита возникает из-за формы поверхности. Эта аналогия не совсем точная, так как существует еще дополнительная сила — притяжение Земли.
- Предыдущая
- 43/138
- Следующая