Выбери любимый жанр

Удивительная космология - Шильник Лев - Страница 4


Изменить размер шрифта:

4

Косвенным аргументом в пользу справедливости наших рассуждений может послужить совершенно пещерный уровень космологических представлений в раннесредневековой Византии. Просвещенный византиец Косьма Индикоплевт (Козьма Индикополов), признанный специалист по средневековой космографии, полагал, что Вселенная представляет собой прямоугольный ящик, омываемый водами великой реки Океан. Небесный свод поддерживается четырьмя отвесными стенами. Звезды, по мнению Косьмы, есть не что иное, как маленькие гвоздики, которыми нашпигована крышка этого ящика, а по углам сей невразумительной конструкции помещаются четыре ангела, производящие ветер. Между прочим, упомянутый Косьма жил в VI веке уже новой эры, то есть через 900 лет после Аристарха и через 700 – после Эратосфена. А ведь Византия – это Восточная Римская империя, некогда входившая в состав просвещенного Pax Romana, который, в свою очередь, наследовал грекам. В отличие от Западной Римской империи, Византия не подвергалась опустошительным набегам варварских племен, да и времени с момента падения Рима (476 год) прошло чуть да маленько – около 100 лет. Ну ладно, рассмотрение нетрадиционных исторических версий не входит в наши задачи. Это просто замечания, что называется, по поводу…

Удивительная космология - i_008.jpg

Николай Коперник

Итак, за 100 с лишним лет до начала христианской эры астрономам удалось измерить расстояние до Луны, причем очень точно. А что можно сказать о других небесных телах? Насколько далеко они расположены от Земли? Уже упоминавшийся Аристарх Самосский (IV–III вв. до н. э.) попытался вычислить расстояние от Земли до Солнца, но потерпел фиаско. Математические рассуждения греческого астронома были вполне безупречны, а вот инструменты, имевшиеся в его распоряжении, никуда не годились, поэтому полученная им величина оказалась меньше истинного расстояния почти в 15 раз. (Впрочем, многие историки сомневаются в реальном существовании Аристарха и не без оснований полагают, что ему приписаны достижения европейских астрономов XVI века.) Результат Архимеда был значительно лучше (2/5 от действительной величины), однако сие весьма настораживает, поскольку даже Иоганн Кеплер в XVII веке с этой задачей не справился – вычисленное им расстояние оказалось еще меньше. Как бы там ни было, небо отодвинулось в несусветную даль, а Вселенная оказалась гораздо больше, чем могли помыслить самые дерзкие умы античности.

Удивительная космология - i_009.jpg

Гелиоцентрическая система Коперника

После Гиппарха и Птолемея в астрономических науках наступил застой. Стагнация продолжалась свыше полутора тысяч лет, вплоть до начала XVI века, когда польский священник Николай Коперник предложил новую модель мироздания с неподвижным Солнцем в центре, получившую название гелиоцентрической. Согласно этой модели, планеты вращались вокруг Солнца по правильным окружностям, а их число уменьшилось до шести (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн). Луна же, строго говоря, потеряла статус полноценной планеты и превратилась в естественный спутник Земли. Хотя модель Коперника была значительно проще птолемеевой и давала несколько лучшие результаты, ее на протяжении почти 100 лет серьезно не воспринимали. Перелом произошел в XYII веке, когда сначала итальянский астроном Галилео Галилей сумел разглядеть в телескоп (который он же сам и изобрел в 1608 году) спутники Юпитера, а вслед за ним великий Иоганн Кеплер внес поправки в схему Коперника. Проанализировав блестящие наблюдения Марса, выполненные его учителем, датским астрономом Тихо Браге, Кеплер пришел к выводу, что единственная геометрическая фигура, которая идеально отвечает этим наблюдениям, – эллипс. Итак, в модифицированной модели Коперника планеты стали обращаться вокруг Солнца по эллиптическим орбитам, а Солнце переместилось в один из фокусов этого эллипса.

Удивительная космология - i_010.jpg

Иоганн Кеплер

Более того, Кеплер обнаружил, что между средними расстояниями планет от Солнца и периодами их обращения существует простое математическое соотношение. Таким образом, стало возможным вычислить относительное расстояние между Солнцем и любой из планет. К сожалению, это мало что давало, потому что у схемы, предложенной Кеплером (вполне надежной и замечательно согласующейся с наблюдениями), напрочь отсутствовал масштаб. Можно было сказать, что, скажем, Сатурн расположен от Солнца в 10 раз дальше Земли, но чему равно это расстояние в километрах – тайна, покрытая мраком. А вот если бы удалось каким-то способом вычислить расстояние между Землей и любой из планет, у астрономов сразу бы появился в руках необходимый масштаб. Дело было за малым – придумать такой способ.

Для определения расстояний между небесными телами используют явление параллакса. Параллакс – очень простая штука. Если рассматривать свой собственный палец на фоне пестрых обоев правым и левым глазом поочередно, легко убедиться, что в тот момент, когда вы закрываете один глаз и открываете другой, палец смещается на некоторое расстояние относительно фона. Чем ближе расположен к глазам палец, тем больше будет это смещение. Суть явления лежит на поверхности: поскольку глаза разнесены на некоторое расстояние друг от друга, вы смотрите на предмет каждым глазом под определенным углом.

Тот же самый подход без труда применим и к небесным телам. Разумеется, поочередно моргать глазами, глядя, скажем, на Луну, совершенно бессмысленно, поскольку она расположена слишком далеко. А вот если два астронома, разделенные расстоянием в несколько сотен километров, будут одновременно наблюдать наш естественный спутник на фоне звездного неба, лунный параллакс легко обнаружится. Нужно только договориться, относительно какой звезды будут вестись наблюдения, и тогда первый астроном увидит край лунного диска на одном угловом расстоянии от заранее выбранной звезды, а второй, соответственно, – на ином. Дальше – уже дело техники: если известны смещение Луны относительно звездного фона и расстояние между обсерваториями, то с помощью несложных тригонометрических функций можно рассчитать расстояние до Луны.

В ходе таких наблюдений было установлено, что величина лунного параллакса составляет 57 минут дуги, или около 1 градуса дуги (полная окружность насчитывает 360 градусов; в одном градусе содержится 60 минут, а в минуте – 60 секунд). Смещение в 57 минут дуги измерить очень легко, так как оно равняется примерно двум видимым диаметрам полной Луны. Расстояние, вычисленное с помощью параллакса, показало хорошее совпадение с цифрами, полученными старым проверенным методом – по земной тени во время лунного затмения.

А вот с планетами вышла неувязка. Беда в том, что они расположены слишком далеко, поэтому параллактическое смещение столь незначительно, что его не удавалось измерить вплоть до начала XVII столетия. Задача была успешно решена после изобретения телескопа в 1608 году. Во второй половине XVII века два французских астронома, Жан Рише и Джованни Кассини (итальянец по происхождению), вычислили параллактическим методом расстояние от Земли до Марса. Наблюдения проводились одновременно в Париже и Французской Гвиане. Модель Кеплера получила наконец вожделенный масштаб, после чего можно было без труда рассчитать все остальные расстояния внутри Солнечной системы. В частности, Кассини определил, что расстояние от Земли до Солнца составляет 140 миллионов километров. Для XVII века это очень неплохая точность, так как он ошибся всего на 10 миллионов километров. Техника не стояла на месте, и в первой половине XVIII века результат Кассини был подправлен до 152 миллионов километров (современное значение – 149,6 миллиона километров). Эту величину впоследствии назвали астрономической единицей (а. е.) и стали широко применять в качестве своего рода межпланетной версты.

4
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело