Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Семихатов Алексей - Страница 40
- Предыдущая
- 40/95
- Следующая
Поэтому работу 1859 года почитают не за ее логическую чистоту и уж заведомо не за ее ясность, а за одну лишь оригинальность примененного Риманом метода и за величайший размах и мощь его результатов, которые уже обеспечили и продолжают обеспечивать его коллег-математиков материалом на десятилетия работы.
О том, что последовало за статьей 1859 года, пишет в своей книге о дзета-функции[78] Хэролд Эдвардс:
В течение первых 30 лет после опубликования статьи Римана в этой области не наблюдалось практически никакого прогресса. Это выглядело так, как будто именно столько времени потребовалось математическому миру для переваривания римановых идей. Затем в течение промежутка примерно в 10 лет Адамар, фон Мангольдт и де ля Валле Пуссен добились успехов в доказательстве как основной формулы Римана для ?(x), так и теоремы о распределении простых чисел, а также ряда других родственных теорем. Во всех этих доказательствах идеи Римана сыграли ключевую роль.
Работа Римана «О числе простых чисел, не превышающих данной величины» имела прямое отношение к попыткам доказать Теорему о распределении простых чисел (ТРПЧ). Если бы выяснилось, что Гипотеза Римана верна, то ТРПЧ была бы получена в качестве следствия. Однако Гипотеза представляет собой намного более сильный результат, чем ТРПЧ, и последнюю можно было бы доказать, исходя и из более слабых предпосылок. Основное значение работы Римана для доказательства ТРПЧ состояло в том, что она предоставила средства — результаты, позволяющие глубоко проникнуть в суть аналитической теории чисел, — с помощью которых и была проложена дорога к доказательству.
Это доказательство появилось в 1896 году. Период, прошедший между выходом работы Римана и доказательством ТРПЧ, был отмечен следующими вехами.
• Вырос объем практических знаний о простых числах. Были опубликованы более длинные таблицы простых чисел, среди которых выделяются таблицы Кулика, представленные Венской академии наук в 1867 году, — там были приведены делители всех чисел до 100 330 200. Эрнст Майсель разработал хитрый способ вычисления ?(x) — функции, которая считает количество простых чисел. В 1871 году он нашел правильное значение для ?(100 000 000). В 1885 году он вычислил значение ?(1000 000 000), которое оказалось на 56 меньше правильного результата (хотя это и обнаружили лишь 70 лет спустя).
• В 1874 году Франц Мертенс добился скромного результата, касающегося чисел обратных к простым, используя методы, которые заимствовали кое-что как у Римана, так и у Чебышева. Ряд 1/2 + 1/3 + 1/5 + 1/7 + 1/11 + 1/13 + … + 1/p + … расходится, хотя и более медленно, чем гармонический ряд. Явно выписанная сумма ~ ln(ln p).
• В 1881 году Дж. Дж. Сильвестр из Университета Джонса Хопкинса в Соединенных Штатах улучшил найденные Чебышевым границы отклонений (см. главу 8.iii) с 10 до 4 процентов.
• В 1884 году датский математик Йорген Грам опубликовал статью под названием «Исследования числа простых чисел, меньших данного числа» и получил за нее премию Датского математического общества. (Статья не содержала существенного прогресса, но заложила основы для полученных позднее результатов Грама, которые мы рассмотрим в должный момент.)
• В 1885 году голландский математик Томас Стилтьес заявил, что у него есть доказательство Гипотезы Римана. Подробности этой истории мы опишем чуть ниже.
• В 1890 году французская Академия наук объявила, что главная премия будет присуждена за работу по теме «Определение числа простых чисел, меньших заданной величины». Крайним сроком подачи работ на конкурс был июнь 1892 года. В объявлении было ясно сказано, что академия приветствует работу, которая прояснила бы некоторые доказательства, отсутствовавшие в работе Римана 1859 года. Молодой француз Жак Адамар направил статью о представлении некоторых классов функций в терминах их нулей. Риман опирался на подобный результат при выводе своей формулы для ?(x); именно на этом (математические детали будут подробнее объяснены позже) зиждится связь между простыми числами и нулями дзета-функции, но Риман оставил этот результат без доказательства. Ключевые идеи Адамар взял из своей диссертации, которую защитил в том же году. Он и получил премию.
• В 1895 году немецкий математик Ханс фон Мангольдт доказал основной результат работы Римана, в котором утверждается связь между ?(x) и дзета-функцией, и преобразовал его к более простому виду. Тогда стало ясно, что если бы была доказана некая теорема, намного более слабая, чем Гипотеза Римана, то применение ее к формуле фон Мангольдта дало бы доказательство ТРПЧ.
• В 1896 году два работавших назависимо математика — уже упомянутый Жак Адамар и бельгиец Шарль де ля Валле Пуссен — доказали этот более слабый результат и, следовательно, ТРПЧ.
Уже говорилось, что любой, кто бы ни сумел доказать ТРПЧ, тем самым снискал бы себе бессмертие. Это предсказание едва не сбылось: Шарль де ля Валле Пуссен умер за пять месяцев до своего 96-летия, а Жак Адамар — за два месяца до 98-летия.[79] Они не знали — по крайней мере, достаточно долго не знали, — что соревнуются друг с другом; и, поскольку оба они опубликовали свои результаты в один и тот же год, со стороны математиков было бы нечестно отдавать предпочтение кому-то одному из них за то, что он получил этот результат первым. Как и в случае восхождения на Эверест, они разделили славу.
Судя по всему, де ля Валле Пуссен опубликовался чуть раньше. Статья Адамара — она называлась Sur la distribution des zeros de la fonction ?(s) et ses consequences arithmetiques[80] — вышла в бюллетене Французского математического общества. Адамар добавил замечание о том, что он узнал о результате де ля Валле Пуссена, когда читал гранки своей статьи. И далее: «Однако я полагаю, что никто не сможет отрицать, что преимущество моего метода состоит в его простоте».
Этого никто никогда и не отрицал. Доказательство Адамара проще; из того факта, что он знал об этом до того, как его статья была напечатана, следует, что он не только слышал о результате де ля Валле Пуссена, но и имел возможность ознакомиться с ним. Однако поскольку их работы с очевидностью независимы, поскольку никогда не было ни малейшего намека на нечестную игру и поскольку и Адамар, и де ля Валле Пуссен были настоящими джентльменами, эти одновременные доказательства не стали причиной вражды или полемики. Я удовлетворюсь тем, что скажу, как говорит и весь математический мир: в 1896 году француз Жак Адамар и бельгиец Шарль де ля Валле Пуссен, работая независимо, доказали ТРПЧ.
Доказательство ТРПЧ является великой поворотной точкой в нашей истории — настолько важным моментом, что в соответствии с ним я разбил книгу на две части. Во-первых, оба доказательства 1896 года опирались на некоторый результат в духе Гипотезы. Если бы или Адамар, или де ля Валле Пуссен смогли доказать справедливость Гипотезы, то справедливость ТРПЧ была бы остановлена немедленно. Они, разумеется, этого не смогли, но им этого и не требовалось. ТРПЧ — это орех, а Гипотеза Римана — молоток. ТРПЧ следует из более слабого (и безымянного) утверждения:
Все нетривиальные нули дзета-функции имеют вещественную часть, меньшую единицы.
Если доказать такое, то можно воспользоваться основным результатом Римана в форме, которую ему придал фон Мангольдт, и тем самым доказать ТРПЧ. Именно это и сделали двое наших ученых в 1896 году.
Во-вторых, как только ТРПЧ перестала застилать горизонт, Гипотеза стала видна в полный рост. В ней был сосредоточен следующий по очереди ключевой открытый вопрос в аналитической теории чисел; и по мере того, как математики стали уделять ей внимание, выяснилось, что из доказательства ее справедливости последовало бы огромное множество вещей. Если ТРПЧ была гигантским Белым Китом теории чисел в XIX столетии[81], то Гипотеза Римана заняла ее место в XX. Даже больше чем просто заняла ее место, поскольку она зачаровала не только специалистов по теории чисел, но и математиков всех сортов и даже, как мы увидим, физиков и философов.
78
Эдвардс Х.М. Дзета-функция Римана. 1974. Перепечатано изд-вом Dover в 2001 г.
79
Несмотря на некоторое число печальных примеров, — как, скажем, Риман — математики высокого уровня демонстрируют потрясающее здоровье. При написании этой книги меня поразило число математиков, доживших до значительного возрасту и продолжавших активно трудиться практически до конца своих дней. «Математика — очень тяжелая работа, и ее корифеи имеют тенденцию быть выше среднего в том, что касается энергии и здоровья. Ниже определенного предела человек сдает, но выше этого предела напряженная умственная работа способствует сохранению энергии и здоровья (а также — как можно судить из многочисленных исторических свидетельств на протяжении многих лет — способствует долголетию)» (Литлвуд Дж. И. Искусство работы математика. 1967). Литлвуд, о котором еще много будет сказано в главе 14, стал иллюстрацией своего собственного тезиса, дожив до 92 лет. В 1972 г. его коллега X.А. Холлонд сделал о нем следующую запись: «Ему идет 87-й год, а он продолжает работать по нескольку часов подряд, занимаясь написанием статей для публикации и помогая математикам, которые прислали ему свои задачи». (Цит. по Беркил Дж. Ч. в кн.: Математика: Люди, проблемы, результаты. Brigham Young University. 1984.)
80
О распределении нулей функции ?(s) и их арифметических следствиях. (Примеч. перев.)
81
Имеется в виду роман-притча Г. Мелвилла «Моби Дик, или Белый Кит» (1851). (Примеч. перев.)
- Предыдущая
- 40/95
- Следующая