Выбери любимый жанр

Хаос и структура - Лосев Алексей Федорович - Страница 39


Изменить размер шрифта:

39

В–третьих, Гильберт как бы рассуждает так: я ничего не знаю о том, что такое точка, прямая, и плоскость, и пр.; для меня это просто какие–то «системы вещей», о смысле которых я впервые только еще условливаюсь; и если я постулирую, что некая вещь, называемая прямой, определяется двумя точками, то это еще не значит, что две точки обязательно в ней содержатся, подобно тому как, определяя близорукость диоптриями, я этим еще ровно ничего не предрешаю в вопросе о том, что такое близорукость вообще и какими вообще средствами ее можно определить. По–видимому, в этом и скрывается весь секрет гильбертовских аксиом. Гильберт «не знает», что такое прямая; и, определивши ее двумя точками, он еще «не знает», имеются ли эти две точки на ней фактически или нет. Такая позиция, однако, для философа есть жалкие и наивные потуги на критицизм и на логику.

В самом деле, допустим, что Гильберт действительно не знает, что такое прямая. Вот он «условился»: будем называть прямой то, что определяется двумя различными точками. Если он действительно «не знал» прямую, а знал только точки (почему точка понятнее прямой — тоже неизвестно), то мы вправе его спросить: а что значит «определяется»? Нам известно только, что такое точка, и мы говорим: «Прямая определяется двумя точками». Но что же это такое «определяется»? Если одна точка не есть прямая и другая не есть прямая, то откуда же две точки «определили» прямую? Если имеется два голодных желудка, то на каком основании Гильберт утверждает, что два голодных желудка определяют один сытый желудок? Или это «определение» употреблено у Гильберта в совершенно неясном, непроанализированном смысле: тогда «определение» прямой через две точки ровно ничего не говорит, это пустые звуки, и тогда действительно надо еще отдельно постулировать наличие двух точек на прямой; или Гильберт свое «определение» понимает в обычном — правда, тоже совершенно наивном, но зато вполне ясном—смысле, когда мы приставляем к двум точкам линейку и реально проводим прямую; но тогда постулат о наличии двух точек на прямой уже содержится в определении прямой двумя точками.

Как образец наивности Гильберта в этом отношении можно привести слова из § 2 его «Оснований геометрии»: «Вместо термина «определяют» мы будем употреблять и другое, — напр., а «проходит» «через» А и «через» В, а «соединяет» А «и» В или а «соединяет» А «с» В. Если А есть точка, которая с другою точкою определяет прямую а, то мы употребляем также выражения: А «лежит на» а, «существует точка» А и т. д. Если А лежит на прямой а и сверх этого на другой прямой [£], то мы говорим: «прямые» а «и» [b] «имеют общую точку А» и т. д.». Эти слова наивны потому, что они беспомощно открывают тайный интуитивный корень всего гильбер–товского формализма. Оказывается, «определение» это и есть не что иное, как обычное помещение двух точек на прямой. Но тогда уже в первой аксиоме содержатся все прочие «аксиомы сочетания» о точках и прямой.

с) Гильберт—формалист; он хочет изгнать всякую интуицию из математики и заменить ее логическими определениями. Пуанкаре [20]пишет: «Гильберт старался, так сказать, представить аксиомы в такой форме, чтобы они могли быть прилагаемы лицом, которое не понимало бы их смысла, потому что никогда не видело ни точки, ни прямой, ни плоскости. Рассуждения должны, по его мнению, приводиться к чисто механическим правилам; и для того чтобы строить геометрию, достаточно рабски прилагать эти правила к аксиомам, не зная, что они, собственно, выражают. Таким образом можно было бы построить всю геометрию, я не скажу, ничего в ней не понимая, потому что будет понятно логическое сцепление предложений, но по крайней мере ничего в ней не видя. Можно было бы вставить аксиомы в логическую машину, напр. в логическое пианино Стенли Джевонса, и из нее вышла бы вся геометрия». Таким образом, весь смысл предприятия Гильберта заключается в изгнании всего интуитивного и в замене его логикой, потому что только с такой точки зрения и можно оправдать те повторения и тавтологии в аксиомах, которые были отмечены выше и с которыми нам еще придется встретиться ниже. Но вот оказывается, что в самое начало, в самую душу геометрии введена самая обыкновенная интуиция: «проходит через», «лежит на», «соединяет» и пр. Она не уничтожается от того, что эти слова Гильберт ставит в кавычках. Но я повторяю: если «определение» прямой двумя точками есть интуиция, то все прочие аксиомы уже в ней содержатся.

d) Такая же тавтология и путаница у Гильберта и в плоскостных аксиомах. О том, что любые три точки плоскости, не лежащие на одной прямой, определяют эту плоскость (Г 5), говорится уже в основной аксиоме об определении плоскости (Г 4). Аксиома же 16: «Если две точки А и В прямой а лежат в плоскости а, то и всякая точка прямой а лежит в плоскости а» есть не что иное, как следствие аксиомы Г1, потому что если линия вполне определена двумя любыми точками, то ясно тавтологически, что, какие бы две точки на этой прямой ни были взяты, они будут относиться именно к этой прямой, а если вся линия — на плоскости, то и любая точка ее необходимо на той же плоскости. Аксиома Г 7 о том, что «две плоскости имеют по крайней мере две общие точки, если имеется одна общая точка», также есть только следствие из определения плоскости тремя точками, не лежащими на одной прямой.

Что же касается последней аксиомы Г 8: «Существует по меньшей мере четыре точки, не лежащие в одной плоскости», то, во–первых, почему–то не сформулировано здесь то, что именно определяется этими четырьмя точками, т. е. тело, в то время как в предыдущих аксиомах формулировалось именно определяемое (линия и плоскость). Во–вторых же, самый способ формулировки этой аксиомы производит несколько наивное впечатление своей сугубой осторожностью и трогательно–деловитым критицизмом. Если Гильберт считает, что признание четырех точек не в одной плоскости есть ничем не доказанная предпосылка геометрии, вводимая нами на веру и потому фиксируемая в виде аксиомы, то ведь тот же самый критицизм можно проявить и к возможности трех точек не на одной линии, и к возможности двух точек вообще. По–моему, также и признание возможности одной какой–нибудь точки ровно в той же мере достоверно и в той же мере сомнительно, что и признание четырех точек. И тогда надо было бы ввести еще три аксиомы: «Существует по крайней мере одна точка»; «Существуют по крайней мере две разные точки»; «Существуют по крайней мере три точки не на одной линии». Это, конечно, было бы наивно и пусто. Все геометрические фигуры, равно как и всякое арифметическое число или действие, совершенно одинаковы в смысле своей достоверности и очевидности; и нужно эту достоверность вынести сразу раз навсегда за скобки и ограничиться логической системой того, что остается внутри этих скобок. Рассуждать же о достоверности и реальности предметов знания вообще не дело математиков.

е) Но попробуем стать на точку зрения самого Гильберта, который не хотел подчеркивать достоверность трехмерного пространства (хотя даваемая им формулировка и вводит в заблуждение), а хотел возможно короче выразить «аксиомы сочетания» (потому что аксиома 18 уже предполагает существование трех точек не на одной прямой, существование двух точек, различных между собой, и, наконец, существование одной точки). Если подходить к аксиоме 18 именно так, то здесь получится некая невязка: предметную общность аксиом Гильберт заменяет внешнею общностью, которая если и имеет какой–нибудь смысл, то только чисто интуитивный. Если имеется трехмерное пространство, то всякий скажет, что тем самым имеется и двухмерное, и одномерное; и для краткости речи, конечно, можно сказать, что пространство по меньшей мере трехмерно. Но эта краткость речи не имеет ничего общего с аксиоматической общностью. Все равно смысл того, что Гильберт хочет сказать в аксиоме 18, заключается именно в утверждении существования пространства одного, двух, трех и т. д. измерений. И если Гильберт скажет, что из I 8 логически вытекает существование двух и одного измерений (в этом, по–видимому, смысл такой краткости речи), то логически также и из одного измерения вытекает два измерения, а из двух — три (подобно тому как единица предполагает двойку, двойка — тройку и т. д.) и логически с таким же успехом можно было бы вместо аксиомы I 8 сказать: существует по меньшей мере одна точка.

39
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело