Самосознающая вселенная. Как сознание создает материальный мир - Госвами Амит - Страница 32
- Предыдущая
- 32/80
- Следующая
ГЛАВА 8. ПАРАДОКС ЭЙНШТЕЙНА-ПОДОЛЬСКОГО-РОЗЕНА
Идеалистическая интерпретация коллапса квантово-волновой функции держится на нелокальности сознания. Поэтому нам нужно спросить — существуют ли какие-либо экспериментальные доказательства нелокальности. Нам везет. В 1982 г. Ален Аспект и его сотрудники в университете Пари-Зюд провели эксперимент, который убедительно продемонстрировал квантовую нелокальность.
В 1930-е гг. Эйнштейн помогал в создании парадокса, ныне общеизвестного как парадокс ЭПР, с целью доказать неполноту квантовой механики и поддержать реализм. Учитывая философские убеждения Эйнштейна, ЭПР вполне могло бы означать «Эйнштейн в Поддержку Реализма». По иронии судьбы парадокс обернулся ударом по реализму — по крайней мере, по материальному реализму, — и не последнюю роль в этом сыграл эксперимент Аспекта.
Вспомните принцип неопределенности Гейзенберга: в любое данное время можно измерить с абсолютной достоверностью только одну из двух взаимодополнительных переменных — положение или импульс. Это означает, что мы никогда не можем предсказать траекторию квантового объекта. Вместе с двумя своими сотрудниками, Борисом Подольским и Натаном Розеном, Эйнштейн придумал сценарий, который, казалось, противоречил этой неопределенности.
Представьте себе, что два электрона — назовем их Джо и Мо — в течение некоторого времени взаимодействуют друг с другом, а затем перестают взаимодействовать. Эти электроны, разумеется, являются идентичными близнецами, поскольку электроны неразличимы. Предположим, что когда Джо и Мо взаимодействуют, их расстояния от некоторого источника по определенной оси равны соответственно x Jи х M(рис. 29), Электроны движутся и, следовательно, обладают моментом количества движения (импульсом). Мы можем обозначить эти импульсы (вдоль той же оси) как р J и р M .Из квантовой механики следует, что мы не можем одновременно измерить и р J, и x J, или и р M, и х Mвследствие принципа неопределенности. Однако квантовая механика позволяет нам одновременно измерять их расстояние друг от друга (X = x J- х M ) и их суммарный импульс (Р = р J + р M ).
Рис. 29. Корреляция Джо и Мо в ЭПР. Расстояние между ними, x J— х M, всегда остается одним и тем же, и их общий импульс всегда равен p J+ р м
Эйнштейн, Подольский и Розен утверждали, что когда Джо и Мо взаимодействуют, они становятся скоррелированными, поскольку, даже если позднее они перестают взаимодействовать, измерение положения Джо (x J) позволяет нам точно вычислить, где находится Мо — значение х M— (так как х M= x J— X, где X— известное расстояние между ними). Если мы измеряем p J(импульс Джо), то можем определить р M(импульс Мо), так как р M = P— р J ,а Ризвестно. Таким образом, выполняя надлежащее измерение Джо, мы можем определять или положение, или импульс Мо. Однако если мы проводим измерения Джо, когда Джо и Мо больше не взаимодействуют, то эти измерения, вероятно, никак не могут действовать на Мо. Таким образом, должны быть одновременно доступны значения положения и импульса Мо.
Вывод ЭПР гласил, что скоррелированный квантовый объект (Мо) должен одновременно обладать определенными значениями и положения, и импульса. Этот вывод поддерживал реализм, так как теперь мы, в принципе, могли определять траекторию движения Мо. Напротив, он, казалось, серьезно компрометировал квантовую механику, поскольку она согласна с идеализмом в том, что траекторию квантового объекта невозможно вычислить, так как траектория не существует — существуют только возможности и наблюдаемые события!
Эйнштейн доказывал, что если траектория скоррелированного квантового объекта, в принципе, предсказуема, но квантовая механика не способна ее предсказать, значит с квантовой механикой что-то не так. Любимый вывод Эйнштейна из этой дилеммы состоял в том, что квантовая механика — это неполная теория. Ее описание состояний двух скоррелированных электронов не полно. Тем самым он косвенно поддерживал идею существования скрытых переменных — неизвестных параметров, которые управляют электронами и определяют их траектории.
Физик Хайнц Пагелс так охарактеризовал концепцию скрытых переменных: «Если представить себе, что реальность — это колода карт, то квантовая теория способна предсказывать лишь вероятность попадания карт различным игрокам при сдаче. Если бы существовали скрытые переменные, это было бы все равно что смотреть в колоду и предсказывать отдельные карты у каждого игрока».
Эйнштейн поддерживал идею детерминистических скрытых переменных для того, чтобы демистифицировать квантовую механику. Помните, он был реалистом. Для Эйнштейна вероятностная квантовая механика подразумевала играющего Бога, а он верил, что Бог не играет в кости. Он считал необходимым заменить квантовую механику какой-нибудь теорией скрытых переменных, чтобы восстановить детерминистический порядок в мире. К сожалению для Эйнштейна, затруднение, создаваемое для квантовой механики анализом ЭПР, можно разрешить, не прибегая к скрытым переменным, — что первым показал Бор. Сообщают, что Бор сказал Эйнштейну: «Не указывайте Богу, что делать».
Для того чтобы возродить траектории и, следовательно, материальный реализм, Эйнштейн, Подольский и Розен исходили из доктрины локальности. Вспомните, что локальность — это принцип, согласно которому любые взаимодействия опосредуются передачей сигналов через пространство-время. Эйнштейн и его коллеги молчаливо допускали, что измерение положения (или импульса) первого электрона (который мы назвали Джо) можно осуществлять, не влияя на второй электрон (Мо), поскольку два электрона разделены в пространстве и во время измерения не взаимодействуют посредством локальных сигналов. Это отсутствие взаимодействия представляет собой то, что мы обычно ожидаем для материальных объектов, поскольку теория относительности, ограничивающая скорость распространения любых сигналов скоростью света, запрещает мгновенное взаимодействие на расстоянии, или нелокальность.
Главный вопрос состоит в разделимости: являются ли скоррелированные квантовые объекты раздельными, когда между ними нет никакого локального взаимодействия, как это, несомненно, обстоит с объектами, подчиняющимися классической физике?
Почему результат ЭПР считается парадоксом? Эйнштейнианский принцип разделимости составляет неотъемлемую часть философии материального реализма, которую Эйнштейн защищал до конца своей жизни. Эта философия считает физические объекты реальными и независимыми друг от друга и от их измерения или наблюдения (доктрина строгой объективности). Однако в квантовой механике трудно поддерживать идею реальности физических объектов, независимой от измерений, которые мы на них проводим. Таким образом, Эйнштейном двигало желание дискредитировать квантовую механику и восстановить материальный реализм в качестве основной философии физики. Парадокс ЭПР утверждает, что мы должны выбирать между локальностью (или разделимостью) и полнотой квантовой механики, а это означает отсутствие какого бы то ни было выбора, поскольку разделимость обязательна.
Но так ли это? Ответ звучит громким «нет!», ибо на самом деле разрешение парадокса ЭПР состоит в признании полной неразделимости квантовых объектов. Измерение одного из двух скоррелированных объектов воздействует на второй. По существу в этом и состоял ответ Бора Эйнштейну, Подольскому и Розену. Когда один объект (Джо) из скоррелированной пары схлопывается в состояние импульса p J, волновая функция другого (Мо) тоже схлопывается (в состояние импульса Р — p J), и мы больше ничего не можем говорить о положении Мо. А когда Джо схлопывается в результате измерения положения в x J, волновая функция Мо тоже немедленно схлопывается, соответствуя положению x J — X,и мы больше ничего не можем говорить о его импульсе. Коллапс нелокален, точно так же, как корреляция нелокальна. В ЭПР скоррелированные объекты имеют нелокальную онтологическую связь, или неразделимость, и оказывают друг на друга мгновенное, не опосредуемое сигналами влияние — как бы ни трудно было в это поверить с точки зрения материального реализма- Разделимость — это результат коллапса. Только после коллапса имеются независимые объекты. Таким образом, парадокс ЭПР заставляет нас признавать, что квантовая реальность должна быть нелокальной реальностью. Иными словами, квантовые объекты следует представлять себе как объекты в потенции, определяющие нелокальную сферу реальности, которая превосходит локальное пространство-время и, потому, находится вне юрисдикции установленных Эйнштейном пределов скорости.
- Предыдущая
- 32/80
- Следующая