Выбери любимый жанр

Наука логики - Дебольский Г. Н - Страница 58


Изменить размер шрифта:

58

Стоит рассмотреть более внимательно математическое понятие бесконечного и наиболее замечательные попытки, которые ставят себе целью найти оправдание в пользовании им и устранить затруднение, отягчающее метод. Рассмотрение таких оправданий и определений математического бесконечного, которые я намерен изложить в этом примечании более пространно, бросит в то же время наиболее яркий свет и на самое природу истинного понятия и покажет, как оно представлялось и легло в основу этих попыток.

Обычное определение математического бесконечного гласит, что оно есть величина, больше которой, если она определена как бесконечно большая, или меньше которой, если она определена как бесконечно малая, уже нет или - в другой формулировке - как величина, которая в первом случае больше, а во втором меньше любой другой величины. - В этой дефиниции выражено, конечно, не истинное понятие, а скорее, как уже отмечено, лишь то же противоречие, что и в бесконечном прогрессе. Но посмотрим, что содержится в ней в себе. Величина определяется в математике как то, что может быть увеличено или уменьшено, следовательно, вообще как безразличная граница. И вот, так как бесконечно большое или бесконечно малое есть нечто такое, что уже больше не может быть увеличено или уменьшено, то оно на самом деле уже не определенное количество, как таковое.

Этот вывод необходим и непосредствен. Но именно это соображение, что определенное количество, - а я называю в этом примечании определенным количеством вообще то, чтб оно есть, [а именно ] конечное определенное количество, - снято, обычно не приходит на ум, а между тем оно-то и составляет затруднение для обыденного понимания, так как требуется, чтобы определенное количество, когда оно бесконечно, мыслилось как нечто снятое, как нечто такое, что не есть определенное количество, но количественная определенность чего все же сохраняется.

Если обратимся к тому, как относится к этому определению Кант *, то увидим, что он его находит несогласующимся с тем, что понимают под бесконечным целым. "Согласно обыденному понятию бесконечна та величина, больше которой (т. е. больше определенного множества содержащихся в ней данных единиц) невозможна никакая другая величина. Но никакое множество не может быть наибольшим, так как ко всякому множеству можно прибавить еще одну или несколько единиц. Бесконечное целое не дает нам представления о том, как оно велико, стало быть, понятие его не есть понятие максимума (или минимума): посредством него мыслится только его отношение к любой полагаемой единице, для которой бесконечное целое больше всякого числа. В зависимости от того, взяли ли мы большую или меньшую единицу, бесконечное было бы большим или меньшим, но бесконечность, так как она состоит лишь в отношении к этой данной единице, оставалась бы одной и той же, хотя, конечно, абсолютная величина целого вовсе не была бы таким образом познана".

Кант отвергает признание бесконечного целого некоторым максимумом, завершенным множеством данных единиц. Максимум или минимум, как таковой, все еще представляется определенным количеством, множеством. Таким представлением не может быть отклонено указанное Кантом заключение, которое приводит к большему или меньшему бесконечному. Вообще, когда бесконечное представляют как определенное количество, для него сохраняет значение различие большего или меньшего. Но эта критика не затрагивает понятия истинного математического бесконечного, бесконечной разности, ибо последняя уже не конечное определенное количество.

Напротив, даваемое Кантом понятие бесконечности, которое он называет истинно трансцендентальным, гласит, что "последовательный синтез единицы при измерении определенного количества никогда не может быть закончен" ". В этом понятии подразумевается, как данное, определенное количество вообще; требуется, чтобы оно посредством синтеза единицы стало некоторой численностью, определенным количеством, которое следует точно указать, но, [по утверждению Канта], невозможно когда-либо закончить такой синтез. Этим совершенно очевидно выражено не что иное, как бесконечный прогресс, только представляют себе его здесь трансцендентально, т. е., собственно говоря, субъективно и психологически. Само по себе, дескать, определенное количество, правда, завершено, но трансцендентальным образом, а именно в субъекте, сообщающем ему отношение к некоторой единице, возникает лишь такое определение определенного количества, которое не завершено и всецело обременено потусторонним. Следовательно, здесь вообще не идут дальше противоречия, которое содержится в величине, но которое распределено между объектом и субъектом, так что на долю первого выпадает ограниченность, а на долю второго - выхождение за каждую постигаемую им определенность, в дурное бесконечное.

Выше же было сказано, что определение математического бесконечного и притом так, как им пользуются в высшем анализе, соответствует понятию истинного бесконечного; теперь следует сопоставить эти два определения в более развернутом виде. - Что касается прежде всего истинно бесконечного определенного количества, то оно определилось как в самом себе бесконечное;

оно таково, поскольку, как мы выяснили, и конечное определенное количество или определенное количество вообще, и его потустороннее - дурное бесконечное - одинаково сняты. Снятое определенное количество возвратилось тем самым к простоте и к соотношению с самим собой, но не только так, как экстенсивное определенное количество, переходившее в интенсивное определенное количество, которое имеет свою определенность в каком-то внешнем многообразии лишь в себе, однако, как полагают, безразлично к этому многообразию и отлично от него. Бесконечное определенное количество скорее содержит, во-первых, внешность и, во-вторых, ее отрицание в самом себе. В этом случае оно уже не конечное определенное количество, не определенность величины, которая имела бы наличное бытие как определенное количество, оно нечто простое и потому дано лишь как момент; оно определенность величины в качественной форме; его бесконечность состоит в том, что оно дано как некоторая качественная определенность. - Таким образом, как момент оно находится в сущностном единстве со своим иным, дано лишь как определенное этим своим иным, т. е. оно имеет значение лишь в связи с чем-то находящимся с ним в отношении. Вне этого отношения оно нуль, между тем именно определенное количество, как таковое, безразлично, как полагают, к отношению, хотя оно и есть в нем непосредственное неподвижное определение. В отношении оно только как момент не есть нечто само по себе безразличное; в бесконечности как для-себя-бытии оно, будучи в то же время некоторой количественной определенностью, дано лишь как некоторое "для-одного".

Понятие бесконечного, как оно здесь изложено абстрактно, окажется лежащим в основе математического бесконечного, и оно само станет более ясным, когда рассмотрим различные ступени выражения определенного количества как момента отношения, начиная с низшей ступени, на которой оно еще есть также определенное количество, как таковое, и кончая высшей, где оно приобретает значение и выражение бесконечной величины в собственном смысле.

Итак, возьмем сначала определенное количество в том отношении, в котором оно дробное число. Такая дробь, например, 2/7 не есть такое определенное количество, как 1, 2, 3 и т. д.;

она, правда, обычное конечное число, однако не непосредственное, как целые числа, а как дробь опосредствованно определенное двумя другими числами, которые суть в отношении друг друга численность и единица, причем и единица есть некоторая численность. Но взятые абстрагирование от этого их более точного определения относительно друг друга и рассматриваемые лишь в соответствии с тем, что в качественном соотношении, в котором они здесь находятся, происходит с ними как с определенными количествами, 2 и 7 помимо этого соотношения суть безразличные определенные количества; но выступая здесь как моменты, друг друга и тем самым некоторого третьего (того определенного количества, которое называется показателем), они имеют значение не как 2 и 7, а лишь со стороны их определенности относительно друг друга. Поэтому можно вместо них с таким же успехом поставить также 4 и 14 или 6 и 21 и т. д. до бесконечности. Тем самым они, следовательно, начинают приобретать качественный характер. Если бы 2 и 7 имели значение только как определенные количества, то одно было бы просто 2, а другое 7; 4, 14, б, 21 и т. д. - нечто совершенно иное, чем эти числа, и, поскольку они лишь непосредственные определенные количества, одни из них не могут быть подставлены вместо других. Но поскольку 2 и 7 имеют значение не со стороны той определенности, что они такие определенные количества, их безразличная граница снята; они, стало быть, с этой стороны заключают в себе момент бесконечности, ибо они не только уже не то, что они суть, но сохраняется их количественная определенность, однако как в себе сущая качественная определенность, а именно согласно тому, что они значат в отношении. Они могут быть заменены бесконечным множеством других чисел, так что определенность отношения не изменяет величину дроби.

58
Перейти на страницу:

Вы читаете книгу


Дебольский Г. Н - Наука логики Наука логики
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело