Базы данных: конспект лекций - Коллектив авторов - Страница 7
- Предыдущая
- 7/41
- Следующая
2) свойство идемпотентности:
а) для операции выборки: σ<P> σ<P>r = σ<P>;
б) для операции проекции: r [S’] [S’] = r [S'];
в) для операции переименования в общем случае свойство идемпотентности неприменимо.
Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.
Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.
Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.
И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;
3) свойство монотонности:
а) для операции выборки: r1 ⊆ r2 ⇒ σ<P> r1 ⇒ σ <P>r2;
б) для операции проекции: r1 ⊆ r2 ⇒ r1[S'] ⊆ r2 [S'];
в) для операции переименования: r1 ⊆ r2 ⇒ ρ<φ>r1 ⊆ ρ <φ>r2;
Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r1 и r2 были связаны между собой таким образом, что r ⊆ r2, то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.
Лекция № 5. Реляционная алгебра. Бинарные операции
1. Операции объединения, пересечения, разности
У любых операций есть свои правила применимости, которые необходимо соблюдать, чтобы выражения и действия не теряли смысла. Бинарные теоретико-множественные операции объединения, пересечений и разности могут быть применены только к двум отношениям обязательно с одной и той же схемой отношения. Результатом таких бинарных операций будут являться отношения, состоящие из кортежей, удовлетворяющих условиям операций, но с такой же схемой отношения, как и у операндов.
1. Результатом операции объединения двух отношений r1(S) и r2(S) будет новое отношение r3(S), состоящее из тех кортежей отношений r1(S) и r2(S), которые принадлежат хотя бы одному из исходных отношений и с такой же схемой отношения.
Таким образом, пересечение двух отношений – это:
r3(S) = r1(S) ∪ r2(S) = {t(S) | t ∈r1 ∪t ∈r2};
Для наглядности, приведем пример в терминах таблиц:
Пусть даны два отношения:
r1(S):
r2(S):
Мы видим, что схемы первого и второго отношений одинаковы, только имеют различной количество кортежей. Объединением этих двух отношений будет отношение r3(S), которому будет соответствовать следующая таблица:
r3(S) = r1(S) ∪ r2(S):
Итак, схема отношения S не изменилась, только выросло количество кортежей.
2. Перейдем к рассмотрению следующей бинарной операции – операции пересечения двух отношений. Как мы знаем еще из школьной геометрии, в результирующее отношение войдут только те кортежи исходных отношений, которые присутствуют одновременно в обоих отношениях r1(S) и r2(S) (снова обращаем внимание на одинаковую схему отношения).
Операция пересечения двух отношений будет выглядеть следующим образом:
r4(S) = r1(S) ∩ r2(S) = {t(S) | t ∈ r1 & t ∈ r2};
И снова рассмотрим действие этой операции над отношениями, представленными в виде таблиц:
r1(S):
r2(S):
Согласно определению операции пересечением отношений r1(S) и r2(S) будет новое отношение r4(S), табличное представление которого будет выглядеть следующим образом:
r4(S) = r1(S) ∩ r2(S):
Действительно, если посмотреть на кортежи первого и второго исходного отношений, общий среди них только один: {b, 2}. Он и стал единственным кортежем нового отношения r4(S).
3. Операция разности двух отношений определяется аналогичным с предыдущими операциями образом. Отношения-операнды, так же, как и в предыдущих операциях, должны иметь одинаковые схемы отношения, тогда в результирующее отношение войдут все те кортежи первого отношения, которых нет во втором, т. е.:
r5(S) = r1(S) \ r2(S) = {t(S) | t ∈ r1 & t ∉ r2};
Уже хорошо знакомые нам отношения r1(S) и r2(S), в табличном представлении выглядящие следующим образом:
r1(S):
r2(S):
Мы рассмотрим как операнды в операции пересечения двух отношений. Тогда, следуя данному определению, результирующее отношение r5(S) будет выглядеть следующим образом:
r5(S) = r1(S) \ r2(S):
Рассмотренные бинарные операции являются базовыми, на них основываются другие операции, более сложные.
- Предыдущая
- 7/41
- Следующая