Выбери любимый жанр

100 великих учёных - Самин Дмитрий К. - Страница 14


Изменить размер шрифта:

14

В 1600 году приехавший в Прагу Браге предложил Иоганну работу в качестве своего помощника для наблюдений неба и астрономических вычислений. Незадолго перед этим Браге был вынужден оставить свою родину Данию и выстроенную им там обсерваторию, где он в течение четверти века вёл астрономические наблюдения. Эта обсерватория была снабжена лучшими измерительными инструментами, а сам Браге был искуснейшим наблюдателем.

Когда датский король лишил Браге средств на содержание обсерватории, он уехал в Прагу. Браге с большим интересом относился к учению Коперника, но сторонником его не был. Он выдвигал своё объяснение устройства мира; планеты он признавал спутниками Солнца, а Солнце, Луну и звёзды считал телами, обращающимися вокруг Земли, за которой, таким образом, сохранялось положение центра всей Вселенной.

Браге работал вместе с Кеплером недолго: в 1601 году он умер. После его смерти Кеплер начал изучать оставшиеся материалы с данными долголетних астрономических наблюдений. Работая над ними, в особенности над материалами о движении Марса, Кеплер сделал замечательное открытие: он вывел законы движения планет, ставшие основой теоретической астрономии.

Философы Древней Греции думали, что круг — это самая совершенная геометрическая форма. А если так, то и планеты должны совершать свои обращения только по правильным кругам (окружностям) Кеплер пришёл к мысли о неправильности установившегося с древности мнения о круговой форме планетных орбит. Путём вычислений он доказал, что планеты движутся не по кругам, а по эллипсам — замкнутым кривым, форма которых несколько отличается от круга. При решении данной задачи Кеплеру пришлось встретиться со случаем, который, вообще говоря, методами математики постоянных величин решён быть не мог. Дело сводилось к вычислению площади сектора эксцентрического круга. Если эту задачу перевести на современный математический язык, придём к эллиптическому интегралу. Дать решение задачи в квадратурах Кеплер, естественно, не мог, но он не отступил перед возникшими трудностями и решил задачу путём суммирования бесконечно большого числа «актуализированных» бесконечно малых. Этот подход к решению важной и сложной практической задачи представлял собой в новое время первый шаг в предыстории математического анализа.

Первый закон Кеплера предполагает: Солнце находится не в центре эллипса, а в особой точке, называемой фокусом. Из этого следует, что расстояние планеты от Солнца не всегда одинаковое. Кеплер нашёл, что скорость, с которой движется планета вокруг Солнца, также не всегда одинакова: подходя ближе к Солнцу, планета движется быстрее, а отходя дальше от него — медленнее. Эта особенность в движении планет составляет второй закон Кеплера. При этом Кеплер разрабатывает принципиально новый математический аппарат, делая важный шаг в развитии математики переменных величин.

Оба закона Кеплера стали достоянием науки с 1609 года, когда была опубликована его знаменитая «Новая астрономия» — изложение основ новой небесной механики. Однако выход этого замечательного произведения не сразу привлёк к себе должное внимание: даже великий Галилей, по-видимому, до конца дней своих так и не воспринял законов Кеплера.

Потребности астрономии стимулировали дальнейшее развитие вычислительных средств математики и их популяризации. В 1615 году Кеплер выпустил сравнительно небольшую по объёму, но весьма ёмкую по содержанию книгу — «Новая стереометрия винных бочек», в которой продолжил разработку своих интеграционных методов и применил их для нахождения объёмов более чем 90 тел вращения, подчас довольно сложных. Там же им были рассмотрены и экстремальные задачи, что подводило уже к другому разделу математики бесконечно малых — дифференциальному исчислению.

Необходимость совершенствования средств астрономических вычислений, составление таблиц движений планет на основе системы Коперника привлекли Кеплера к вопросам теории и практики логарифмов. Воодушевлённый работами Непера, Кеплер самостоятельно построил теорию логарифмов на чисто арифметической базе и с её помощью составил близкие к неперовым, но более точные логарифмические таблицы, впервые изданные в 1624 году и переиздававшиеся до 1700 года. Кеплер же первым применил логарифмические вычисления в астрономии. «Рудольфинские таблицы» планетных движений он смог завершить только благодаря новому средству вычислений.

Проявленный учёным интерес к кривым второго порядка и к проблемам астрономической оптики привёл его к разработке общего принципа непрерывности — своеобразного эвристического приёма, который позволяет находить свойства одного объекта по свойствам другого, если первый получается предельным переходом из второго. В книге «Дополнения к Вителлию, или Оптическая часть астрономии» (1604) Кеплер, изучая конические сечения, интерпретирует параболу как гиперболу или эллипс с бесконечно удалённым фокусом — это первый в истории математики случай применения общего принципа непрерывности. Введением понятия бесконечно удалённой точки Кеплер предпринял важный шаг на пути к созданию ещё одного раздела математики — проективной геометрии.

Вся жизнь Кеплера была посвящена открытой борьбе за учение Коперника. В 1617–1621 годах в разгар Тридцатилетней войны, когда книга Коперника уже попала в ватиканский «Список запрещённых книг», а сам учёный переживал особенно трудный период в своей жизни, он издаёт тремя выпусками общим объёмом примерно в 1000 страниц «Очерки коперниканской астрономии». Название книги неточно отражает её содержание — Солнце там занимает место, указанное Коперником, а планеты, Луна и незадолго до того открытые Галилеем спутники Юпитера обращаются по открытым Кеплером законам. Это был фактически первый учебник новой астрономии, и издан он был в период особенно ожесточённой борьбы церкви с революционным учением, когда учитель Кеплера Местлин, коперниканец по убеждениям, выпустил учебник астрономии по Птолемею!

В эти же годы Кеплер издаёт и «Гармонию мира», где он формулирует третий закон планетных движений. Учёный установил строгую зависимость между временем обращения планет и их расстоянием от Солнца. Оказалось, что квадраты периодов обращения любых двух планет относятся между собой как кубы их средних расстояний от Солнца. Это — третий закон Кеплера.

В течение многих лет он ведёт работу по составлению новых планетных таблиц, напечатанных в 1627 году под названием «Рудольфинские таблицы», которые многие годы были настольной книгой астрономов. Кеплеру принадлежат также важные результаты в других науках, в частности в оптике. Разработанная им оптическая схема рефрактора уже к 1640 году стала основной в астрономических наблюдениях.

Работы Кеплера над созданием небесной механики сыграли важнейшую роль в утверждении и развитии учения Коперника. Им была подготовлена почва и для последующих исследований, в частности для открытия Ньютоном закона всемирного тяготения. Законы Кеплера и сейчас сохраняют своё значение: научившись учитывать взаимодействие небесных тел, учёные их используют не только для расчёта движений естественных небесных тел, но, что особенно важно, и искусственных, таких как космические корабли, свидетелями появления и совершенствования которых является наше поколение.

Открытие законов обращения планет потребовало от учёного многих лет упорной и напряжённой работы. Кеплеру, терпевшему гонения и со стороны католических правителей, которым он служил, и со стороны единоверцев-лютеран, не все догмы которых он мог принять, приходится много переезжать. Прага, Линц, Ульм, Саган — неполный список городов, в которых он трудился.

Кеплер занимался не только исследованием обращения планет, он интересовался и другими вопросами астрономии. Его внимание особенно привлекали кометы. Подметив, что хвосты комет всегда обращены в сторону от Солнца, Кеплер высказал догадку, что хвосты образуются под действием солнечных лучей. В то время ничего ещё не было известно о природе солнечного излучения и строении комет. Только во второй половине XIX века и в XX веке было установлено, что образование хвостов комет действительно связано с излучением Солнца.

14
Перейти на страницу:
Мир литературы

Жанры

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело